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Summary

� Leaf age structures the phenology and development of plants, as well as the evolution of

leaf traits over life histories. However, a general method for efficiently estimating leaf age

across forests and canopy environments is lacking.
� Here, we explored the potential for a statistical model, previously developed for Peruvian

sunlit leaves, to consistently predict leaf ages from leaf reflectance spectra across two con-

trasting forests in Peru and Brazil and across diverse canopy environments.
� The model performed well for independent Brazilian sunlit and shade canopy leaves

(R2 = 0.75–0.78), suggesting that canopy leaves (and their associated spectra) follow con-

strained developmental trajectories even in contrasting forests. The model did not perform as

well for mid-canopy and understory leaves (R2 = 0.27–0.29), because leaves in different envi-

ronments have distinct traits and trait developmental trajectories. When we accounted for dis-

tinct environment–trait linkages – either by explicitly including traits and environments in the

model, or, even better, by re-parameterizing the spectra-only model to implicitly capture dis-

tinct trait-trajectories in different environments – we achieved a more general model that

well-predicted leaf age across forests and environments (R2 = 0.79).
� Fundamental rules, linked to leaf environments, constrain the development of leaf

traits and allow for general prediction of leaf age from spectra across species, sites and canopy

environments.

Introduction

It has long been recognized that many important ecological pro-
cesses vary with leaf age, the time elapsed since leaf budburst.
During their lifetime, leaves exhibit variable photosynthetic rates
(Field, 1983; Reich et al., 1991; Wilson et al., 2001; Kitajima
et al., 2002; Pantin et al., 2012), morphological changes (Maksy
mowych, 1973), allocation and transformation of chemicals
(Wilson et al., 2001; Kitajima et al., 2002; Pantin et al., 2012),
epiphyll colonization (Roberts et al., 1998; Toomey et al., 2009)
and defense against herbivory (Coley, 1980; Coley & Barone,
1996; Lawrence et al., 2003; Wang et al., 2012). Thus, leaf age is
a critical parameter for interpreting leaf function over time and
for understanding how leaf traits evolve over development. Fur-
thermore, expected maximum leaf age (leaf lifespan) is central to

understanding plant life history (Field & Mooney, 1983; Reich
et al., 1992), population dynamics (Reich et al., 2004) and the
evolutionary trade-offs of the leaf economic spectrum (Reich
et al., 1997; Wright et al., 2004; Funk & Cornwell, 2013; Osnas
et al., 2013). Thus, many disciplines have long been interested in
monitoring leaf age for individual plants (Field, 1983; Roberts
et al., 1998; Wilson et al., 2001; Reich et al., 2004) and leaf lifes-
pan for many species (Reich et al., 1991, 1992; Wright et al.,
2004; Funk & Cornwell, 2013; Osnas et al., 2013).

More recent studies have begun to emphasize the importance
of leaf ages and canopy age composition on phenology and
ecosystem seasonality of vegetation photosynthesis and transpira-
tion (Doughty & Goulden, 2008; Richardson et al., 2012;
Restrepo-Coupe et al., 2013; Wu et al., 2016). Yet leaf develop-
ment is difficult to monitor at large scales, especially in carbon-
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rich tropical evergreen forests, where individual leaf ages are not
as tightly synchronized with phenology and ecosystem seasonality
as in temperate forests (Reich, 1995). In tropical forests, contrast-
ing interpretation of satellite-detected seasonality of vegetation
greenness (Morton et al., 2014; Bi et al., 2015; Saleska et al.,
2016) arises, in part, due to differing assumptions about the dis-
tribution of leaf ages in forest canopies and how changes in age
composition might affect ecosystem seasonality (Doughty &
Goulden, 2008; Brando et al., 2010; Morton et al., 2014). There-
fore, for such forests, ‘ground truth’ studies of seasonal leaf age
dynamics are clearly needed.

Despite the broad interest in leaf aging, there is currently no
efficient and rapid method for estimating leaf age that can be
applied across forests. Previous studies linking leaf morphological
development (e.g. leaf length) to leaf aging (Erickson & Miche
lini, 1957; Chen et al., 2009; Meicenheimer, 2014) involved
laborious measurements over long time periods or relied on
uncertain assumptions. Near-surface remote sensing (e.g. via
‘phenocam’) is an alternative technique for approximating leaf
age of canopy trees in temperate deciduous forests (Richardson
et al., 2009; Keenan et al., 2014). This approach, however, has
not been tested in tropical evergreen forests and its application
could prove challenging due to the high diversity of leaf phenolo-
gies, with many tree species being brevi-deciduous or evergreen
during most or all of the annual cycle (Opler et al., 1980; Reich,
1995; Sch€ongart et al., 2002).

Spectroscopy may provide a fast and efficient means for esti-
mating leaf ages from their optical properties. Differences in the
reflectance, absorbance and transmittance of light at different
wavelengths by plant parts are tightly coupled to their chemical
composition, cell structure and physiological properties (Curran,
1989; Elvidge, 1990; Kokaly et al., 2009), leading to the rapid
recent development of spectroscopic methods as a general tool in
plant ecophysiology and ecology. For example, spectroscopy has
been used to estimate wood density and hydraulic traits (Acuna
& Murphy, 2006; Petisco et al., 2006; Luss et al., 2015), accu-
rately identify plant species from dried leaves (Durgante et al.,
2013) across developmental stages (Lang et al., 2015), quantify
nonstructural carbohydrate content of different plant organs
(Ramirez et al., 2015) and characterize a broad suite of leaf bio-
physical traits (Clark et al., 2005; Asner & Martin, 2011; Serbin
et al., 2012, 2014; Asner et al., 2014).

Chavana-Bryant et al. (2016), also in this special issue, was the
first study to demonstrate that leaf reflectance spectra can success-
fully predict leaf age by using a partial least-squares regression
(PLSR; Wold et al., 2001) approach applied to data from a Peru-
vian evergreen forest. The underlying logic motivating the devel-
opment of this spectra–age model was that because (1) leaf traits
follow consistent developmental trajectories as leaves age, (2) leaf
spectra emerge from the ensemble of traits that define a leaf’s
structure and function at any particular time (Serbin et al., 2012,
2014; Asner et al., 2014; Ramirez et al., 2015), Thus, leaf spectra
may be used directly to estimate leaf ages and, indeed, be a better
predictor of leaf age than any particular limited set of leaf traits.

Although the spectra–age model was successfully tested for
sunlit leaves in an evergreen forest in Peru (Chavana-Bryant

et al., 2016), the broader applicability and potential limitations
of this approach were not explored. This study thus focuses on
exploring factors that might limit the model performance, such
as variation in age–trait or age–spectra relationships across forest
sites and diverse canopy environments, where species composi-
tion, leaf types and trait values all vary. Specifically, we aim to
answer the following questions:
(1) How are leaf traits and spectra related with leaf development
across sites and canopy environments?
(2) Are these relationships sufficiently consistent to allow a gen-
eral model to accurately predict leaf age from spectra across sites
and various canopy environments?

In order to address these questions, we used measurements of
reflectance spectra, traits and age of leaves collected at two tropi-
cal evergreen forests: we built upon the spectra–age model pre-
sented in Chavana-Bryant et al. (2016) that was based on sunlit
leaves of a Peruvian Amazonian forest and evaluated this model
at an independent Brazilian site with contrasting soil and forest
properties. We then explored the consistency of relationships
across both sites, with a view to developing and validating a spec-
tra–age model generally applicable for tropical forest leaves across
forest sites and canopy environments.

Materials and Methods

Study sites

The study focuses on two Amazonian evergreen forests (Fig. 1): a
Brazilian site and a Peruvian site that represent contrasting
edaphic and forest properties along the primary axis of ecological
variation across Amazonian forests. The Brazil site is less produc-
tive, higher wood density and slower turnover but higher biomass
forest than the Peru site (Malhi et al., 2002, 2006; Pati~no et al.,
2009). The contrast appears driven by soil properties, with

Fig. 1 Location of sites in the Amazon basin, including the Tapajos
National Forest in Brazil (red circle) and the Tambopata National Reserve in
Peru (red triangle). The black line indicates the boundary of the Amazon
basin. The background is a map of dry season length (in months; see color
legend), which is derived from Tropical Rainfall Measuring Mission
(TRMM) satellite data from 1998 to 2013.
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western Amazonian soils in Peru being more fertile but with
poorer physical structure (Quesada et al., 2012).

The Brazil site (2°510S, 54°580W) encompasses the km67
eddy flux tower and associated biometric plots in Tapajos
National forest, near Santar�em, Brazil (Rice et al., 2004; Hutyra
et al., 2007). Part of the Brazilian Large Scale Biosphere-
Atmosphere Experiment in Amazonia (LBA) (Davidson et al.,
2012), this site sits on a well-drained clay-soil plateau. Mean
annual precipitation is ~2000 mm yr�1 with a 5-month-long dry
season (precipitation < 100 mm per month; Restrepo-Coupe
et al., 2013).

The Peru site encompasses two primary forest plots within the
Tambopata National Reserve in the Madre de Dios region of
Peru (Malhi et al., 2014), both part of the Global Ecosystems
Monitoring (GEM) network and the RAINFOR Amazon Forest
Inventory Network (Malhi et al., 2002), with RAINFOR codes
TAM-06 (12°840S, 69°300W) and TAM-09 (12°830S,
69°270W). These forests grow on Haplic alisol soils (Quesada
et al., 2010), at elevations of 215 m and 220 m above sea level,
respectively. Mean annual precipitation is ~1900 mm yr�1

(Malhi et al., 2014), with a 4–5 month-long dry season (Lewis
et al., 2011).

Field measurements

Brazil dataset In campaigns conducted in August–September
2013, November 2013, March 2014 and July–August 2014, we
selected a subset of 11 trees (Table 1) for precise leaf age monitor-
ing. The age monitoring began with observations of leaf budburst
and subsequent leaf tagging (using metal tags alongside in situ
photos; Supporting Information Fig. S1) during the August–
September 2013 campaign, when most sampled trees were flush-
ing new leaves. Following the initial intensive tagging work, we
continued to tag and photograph new leaves periodically. This
age-tagging technique enabled us to accurately track leaf age in
terms of days from leaf emergence at budburst (0 d) to old age
(~400 d). Aside from some of the canopy leaves, this age was
insufficient to sample the senescent leaf age class.

We sampled a total of 759 leaves with precise leaf age informa-
tion for these 11 trees, consisting of four canopy (crowns exposed
to direct sun), three mid-canopy (20–30 m tall) and four under-
story trees (10–20 m tall). Because we harvested both sunlit and
shaded leaves for canopy trees, our dataset of precise leaf age mea-
surements is composed of 15 tree–environment combinations:
four canopy trees in a sunlit environment; four canopy trees in a
shaded environment; three trees in a mid-canopy environment;
and four trees in an understory environment (Table 1).

We measured reflectance spectra (see the later sub-section
‘Spectral measurements in Brazil’) for all 759 leaves and leaf traits
(leaf mass per area, LMA; leaf water content, LWC) for a subset
of 507 of these leaves which were used for the trait–age analysis
reported herein. Traits were derived from leaf FW (precision at
0.001 g), area (using a Canon LiDE 120 scanner) and DW oven-
dried at 60°C for 72 h.

We recorded leaf growth environments (Fig. S2), including (1)
in situ digital hemispherical photos (collected with a 180° fisheye

lens adapter for a Canon T3) to capture the radiation regime (see
the later sub-section ‘Within-canopy light environment’), (2)
branch height (m) – the height of sampled leaves aboveground,
and (3) branch depth (m) – the depth of sampled leaves below
local canopy top.

In addition to the 11 trees with precisely measured leaf ages,
we sampled an additional 29 tree species across diverse canopy
environments, including seven canopy trees, 10 mid-canopy
trees, four understory trees and eight forest-floor shrubs (< 5 m
tall). The dataset included measurements of leaf traits (LMA and
LWC), reflectance spectra and the canopy environments (i.e. ver-
tical canopy positions where the leaves were harvested). This
dataset did not include precise leaf ages, but provides baseline
data on community level relationships between leaf traits and
canopy environments for fully expanded mature leaves (Fig. S3).

Peru dataset The Peru dataset of 1072 leaves was collected in
2011, for sunlit leaves of 12 canopy trees (see Table 1 for species
list). Measurements encompassed two leaf functional traits (LMA
and LWC), and associated leaf reflectance spectra. Peru leaves
were assigned a leaf age designed to correspond to their develop-
mental stage, with young leaves first assigned an initial age of
1 wk when they reached a size large enough to be measured for
spectra, and thereafter tracked through time until they reached
advanced senescence (~400 d). Old leaves (> ~250 d) had their
ages adjusted by normalization relative to maximum leaf age at
senescence, taken to be 13 months (see Chavana-Bryant et al.,
2016; Fig. 1). Full details of the data collection and leaf age clas-
sification protocols for this site are reported in Chavana-Bryant
et al. (2016).

We note that this method of assigning leaf ages differed from
that used in Brazil, where absolute ages (based on time elapsed
since tagging at emergence) were used for all leaves. This differ-
ence in age assignment methods resulted in a 1–4 wk offset in age
between the datasets, depending on species (Brazil tagged leaves
were measured for spectra when they were sufficiently large, typi-
cally at 2–5 wk since emergence, an age that was defined as 1 wk
for Peru leaves), and a scale difference, depending on species, for
old leaves (because Peru leaves were scaled to reach senescence at
13 months, whereas Brazil leaf ages were tracked to c. 13 months
without scaling). As shown in the Results section, this difference
in dating methods did not significantly limit the intercomparabil-
ity of leaf age predictions between sites.

Spectral measurements in Brazil We measured leaf spectra
using a full-range (350–2500 nm) FieldSpec® Pro spectrora-
diometer (Analytical Spectra Devices, ASD, Boulder, CO, USA).
The spectrometer had a spectral sampling resolution of 1.4 nm,
2.2 nm and 2.3 nm in the visible, NIR and SWIR wavelengths
respectively and all data were interpolated to 1 nm before analy-
sis. All measurements were collected using a customized assembly
attached to a plant probe with an internal calibrated light source,
following Chavana-Bryant et al. (2016) protocols. The cus-
tomized assembly was composited by two measurement blocks:
one for 99.9% reflectivity white standard (Spectralon; Labsphere
Inc., North Dutton, NH, USA), and the other for 3% reflectivity
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dark standard (Odyssey III black 449/9009 Marine Grade Cover
Fabric). For each leaf, reflectance spectra were measured on 1–6
different parts of the leaf adaxial surface and then averaged to
determine the mean optical properties across all wavelengths.

Vegetation indices (VIs) In order to include important aspects
of leaf bio-physiological traits that are not fully covered by LMA
and LWC, we calculated four commonly used VIs, including
Normalized Difference Vegetation Index (NDVI; Eqn 1; Tucker,
1979; Ustin et al., 2009), Enhanced Vegetation Index 2 (EVI2;
Eqn 2; Jiang et al., 2008), Photosynthetic Reflectance Index (PRI;
Eqn 3; Gamon et al., 1992) and Normalized Difference Water
Index (NDWI; Eqn 4; Gao, 1996).

NDVI ¼ NIR � R

NIR þ R
Eqn 1

EVI2 ¼ 2:5� NIR � R

NIR þ 2:4� R þ 1
Eqn 2

PRI ¼ q531 � q570
q531 þ q570

Eqn 3

NDWI ¼ NIR � SWIR

NIR � SWIR
Eqn 4

(NIR, reflectance at near-infrared 800 nm band; R, reflectance
at Red 680 nm band; q531, reflectance at 531 nm band; q570,
reflectance at 570 nm band; SWIR, reflectance at short-
wavelength infrared 1240 nm band).

These VIs represent important leaf bio-physiological proper-
ties: NDVI and EVI2 are the integrated metric for the greenness
and structure of leaves (Sellers et al., 1992; Huete et al., 2002);
PRI is a measure of the intrinsic quantum yield for photosynthesis
(Gamon et al., 1992); NDWI is an indicator of leaf water content
or hydrological status (Gao, 1996). By using these VIs (together
with leaf traits of LMA and LWC, and spectra), we aim for a more
comprehensive understanding of the effect of canopy environ-
ments on leaf properties and their developmental trajectories.

Within-canopy light environment We estimated the within-
canopy light environment from in situ digital hemispheric photos
(see the earlier sub-section ‘Brazil dataset’). These photos were
preprocessed and quality controlled using Adobe LIGHTROOM 4
(Adobe Systems Inc., San Jose, CA, USA). Contrast was then
optimized and the modified images were exported in JPEG for-
mat. Using a custom MATLAB program together with Otsu’s algo-
rithm (Otsu, 1975), these images were automatically binarized
into sky (or gap) or non-sky pixels. The image fraction of the sky,
or gap fraction, was then calculated to index the light environ-
ment of the leaf sample.

Spectra–age modelling

General approach As in Chavana-Bryant et al. (2016), we
used the partial least-squares regression (PLSR) modeling
approach (Geladi & Kowalski, 1986; Wold et al., 2001), which

was adapted from several recent studies (Wolter et al., 2008;
Serbin et al., 2014; Singh et al., 2015). PLSR is the current
state-of-the-art approach for linking leaf and canopy spec-
troscopy with leaf and plant traits (e.g. Bolster et al., 1996;
Townsend et al., 2003; Asner & Martin, 2011; Serbin et al.,
2014). Previous studies have also shown that PLSR is a more
robust method compared to simple correlation or multiple
linear regression approaches (Geladi & Kowalski, 1986; Gross-
man et al., 1996; Wold et al., 2001).

Here the PLSR included five steps (Fig. S4): (1) filtering of
outliers (which removed ~5% of data) following the Monte-
Carlo sampling method for outlier detection (Xu & Liang,
2001); (2) the filtered dataset was one-time randomly divided
into the training (70%) and testing (30%) datasets; (3) 90%
of the training dataset was randomly selected (with 100-time
replication) for PLSR analysis, with the latent variable number
varying from 1 to n (n = 20 in our case); (4) the PLSR regres-
sion coefficients were applied to the training and testing
datasets, with model performance assed by using root mean
squares error (RMSE), and R2 (the proportion of variance of
observation explained by model); (5) the optimal latent vari-
able numbers were then identified by minimizing RMSE and
maximizing R2 for the testing dataset.

We implemented the above PLSR analysis to our predictor
variables, using the MCS function from LIBPLS (http://www.lib-
pls.net) for outlier removal, PLSREGRESS function in MATLAB

(Mathworks, Natick, MA, USA) for the PLSR analysis, and cus-
tom MATLAB functions for other steps. The predictor variables in
this study can be either leaf spectra only (400–2500 nm; see ‘Peru
Spectra model’ in the next sub-section and ‘All Spectra model’ in
the later sub-section ‘Generalizing the leaf age model across
canopy environments’) or leaf spectra combined with leaf traits
(see ‘Peru Spectra+all Trait model’ and ‘All Spectra+all Trait
model’ in the later sub-section ‘Generalizing the leaf age model
across canopy environments’).

Cross-site spectra–age analysis We first examined the ability
to model leaf age from leaf spectra across different sites
through a series of tests. We used the spectra–age model
developed for Peruvian sunlit leaves (Chavana-Bryant et al.,
2016) as a ‘reference model’ (or ‘original Peru Spectra
model’), applying it to the Brazilian dataset which included
leaves sampled from four canopy environments. The goal was
to explore the potential for generalizing the spectra–age model
across sites (from Peruvian sunlit leaves to Brazilian sunlit
leaves) and across canopy environments (from Peruvian sunlit
leaves to Brazilian shade canopy, middle-canopy and under-
story leaves).

Generalizing the leaf age model across canopy environ-
ments Because leaf growth environments affect within-canopy
leaf trait variation (Ellsworth & Reich, 1993; Cavaleri et al.,
2010), we expected that the leaves from the broader range of
growth environments in Brazil would have different optical
properties (and therefore different relationships between leaf
spectra and age) as compared with the sunlit leaves from Peru

� 2016 The Authors

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2016)

www.newphytologist.com

New
Phytologist Research 5

http://www.libpls.net
http://www.libpls.net


(Chavana-Bryant et al., 2016). To investigate how spectra–age
relationships depend on the different growth environments and
their associated traits and, hence, to develop a more general
model of leaf age applicable across these growth environments,
we first conducted a reference test (‘Test 0’) of how well the origi-
nal Peru Spectra model predicted leaves across different sites and
environments. We then tested three models of leaf age–trait–
spectra relationships across canopy environments:
– Test 1 (Peru Spectra+ all Trait model): determines whether
accounting for changing growth environments and their associ-
ated leaf traits could improve performance of the Peru refer-
ence model when applied to leaves from all environments. To
this end, we used the original leaf spectral variables for the
Peru reference model alongside the added variables, including
branch height, depth, LMA, LWC and four VIs, as the new
predictor variables, to generate a ‘Peru Spectra+all Trait’ PLSR
model.
– Test 2 (All Spectra model): tests whether a more general spec-
tra-only model can predict leaf ages across all categories of leaves
and growth environments. In this test, we used combined Peru
and Brazil datasets (with leaves encompassing the full range of
traits that emerge from development under different environ-
ments) to re-parameterize an ‘All Spectra’ model (with no traits
included explicitly).
– Test 3 (All Spectra+all Trait model): a simple combination of
Tests 1 and 2.

We hypothesized (H1) that including traits and proxies for
growth environments (Test 1) would indeed improve model gen-
erality from sunlit leaves to understory leaves. A positive outcome
for Test 1 (which would show that accounting for environmental
influence on leaf trait variation improves ability to predict age)
would suggest a second hypothesis (H2) that a spectra-only
model (Test 2) should be able to perform as well as, or even bet-
ter than, the hybrid model of Test 1. This is because spectral
models have been shown to predict a broad array of traits (e.g.
Serbin et al., 2014), including traits that are unmeasured for the
leaves used in this study but which may also be associated with
age (Chavana-Bryant et al., 2016). Finally, we hypothesized (H3)
that Test 3 will perform only marginally better than Test 2,
because the spectra will themselves already capture the majority
of the variation in the response as compared to including traits
separately in the model.

In order to test these hypotheses, in addition to the two
metrics of model goodness, RMSE and R2, we also calculated
the Akaike Information Criterion (AIC) for the model
cross-comparisons. The AIC used is formatted as
AIC ¼ N � logðd2Þ þ 2� m, following the literature (Akaike,
1974; Aho et al., 2014), where N is the number of leaves, d is
RMSE, and m is the optimal latent variable number for each
PLSR modeling scenario.

Results

We first focus on the results from the Brazil site (reported here
for the first time), and then show integration with the Peru
dataset (from Chavana-Bryant et al., 2016).

Leaf traits and spectra vary with age across canopy
environments and forests

Despite the broad trait variation induced by different canopy
environments (from full sun to deeply shaded understory envi-
ronment, Table S1), correlations of leaf traits LMA and LWC
with leaf age were evident across the Brazilian site community
(R2 = 0.20, P < 10�5 for LMA; R2 = 0.42, P < 10�5 for LWC;
Fig. 2a,b). The trait differences across canopy environments
tended to obscure the strength of these correlations, which were
more evident within specific canopy environments across all trees
(R2 = 0.23–0.72 for LMA and R2 = 0.60–0.80 for LWC; Fig. 2)
and within environments of individual trees. Within individual
trees, all 11 tree–environment combinations showed a signifi-
cantly positive trend in LMA–age relationships (R2 = 0.52–0.91),
and significantly negative LWC–age relationships (R2 = 0.60–
0.95). These positive LMA–age and negative LWC–age relation-
ships are consistent with those that were observed at the contrast-
ing forest in Peru where a single leaf environment was sampled
(sunlit leaves, Chavana-Bryant et al., 2016).

Spectral data also showed strong dependency on leaf age and
leaf canopy environments across all Brazilian tree–environment
combinations (Figs 3, S5). Mean visible reflectance, especially the

(a)

(b)

Fig. 2 Leaf trait variation with leaf age and canopy environments at the
Brazil site for 11 tree–environment combinations (see Table 1). (a) Leaf
mass per area (LMA) and (b) leaf water content (LWC). Each colored line
represents a tree in a particular environment (indicated by a ‘species
name_canopy position’ label in the legend, where ‘canopy position’ is
represented by four codes: SU, sunlit canopy; SH, shade canopy; MC, mid-
canopy; US, understory). Solid colored lines indicate sunlit canopy
environment (R2 = 0.31 for LMA; R2 = 0.60 for LWC) and shade canopy
environment (R2 = 0.23 for LMA; R2 = 0.80 for LWC), dashed lines indicate
mid-canopy (MC, R2 = 0.76 for LMA; R2 = 0.74 for LWC) or understory
(US, R2 = 0.39 for LMA; R2 = 0.61 for LWC), and black lines indicate
community average relationships: R2 is the proportion of variation in the
trait that is explained by leaf age (model: log(trait) = a9 log(age) + b).
***, P < 10�5.
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green peak (~ 550 nm), and its variance showed continuous decli-
nes with age across all Brazilian tree–environment combinations.
Initial mean NIR reflectance (800–1200 nm) increased (with
lower variance) during leaf expansion, which was followed by
decreases in the mean (and increases in variance) as leaves aged
(Fig. 3a,c). Mean SWIR reflectance (1400–2500 nm) increased
monotonically with age, whereaas the variance initially decreased
and then increased as leaves aged. These patterns of the relative
spectra change with leaf age, observed at the Brazil site across ver-
tical canopy profiles, are also consistent with those observed in
the Peruvian sunlit leaves (Chavana-Bryant et al., 2016).

Strong spectral dependencies on canopy environments were
also observed (Fig. 3b). Upper canopy vs middle canopy or
understory differences were especially strong in the SWIR, where
reflectance increased monotonically with depth into the canopy
(Fig. 3d). Effects due to canopy environments were comparable
to those of leaf age, indicating that models intended to predict
age across different canopy environments would likely need to
account for growth environment effects.

Cross-site spectra–age analysis

Because leaf traits and spectra consistently vary with leaf age
across both canopy environments and forest sites (albeit with off-
sets among the different canopy environments), we explored the
application of the Peru-trained spectra–age model to the inde-
pendent forest in Brazil. We found that the Peruvian model
developed in Chavana-Bryant et al. (2016, with seven latent vari-
ables) predicted ages of leaves for the Brazilian canopy trees with
high precision (R2 = 0.75 and R2 = 0.78 for sunlit and shade
canopy leaves, respectively) (see Fig. 4a,b at seven latent vari-
ables). However, model performance when predicting ages of
leaves from middle and understory Brazilian trees was poor

(R2 = 0.27 and R2 = 0.29 for Brazilian middle-canopy and under-
story leaves, respectively) (Fig. 4a,b for seven latent variables).

We sequentially re-fitted the Peru-trained model with differ-
ent numbers of latent variables, in order to investigate whether
there existed an optimum number of latent variables that
would improve the Peru-trained model performance across the
range of canopy environments at the Brazil site. We found
that reducing the number of latent variables from seven to five
significantly improved performance of the Peru-trained model
in predicting the ages of Brazil middle-canopy and understory
leaves, without resulting in a significant reduction in perfor-
mance for Peruvian sunlit leaves (for which the seven-variable
model was optimal) (Fig. 4a,b). We thus adopted the five-
variable model as the Peru reference model, optimized across
canopy environments.

Closer investigation of the performance of the seven-variable
Peru-trained spectra–age model for individual Brazilian trees
revealed that the relatively poor performance of this model rela-
tive to the five-variable model was confined to early developing
leaves (≤ 40 d old) of one middle-canopy and two understory
trees (E. uchi_MC, G. Amazonicum_US, and M. ruficalyx_US;
Table 1 and Fig. 5). The early developing leaves of these trees
exhibited ‘reddish’ coloration (e.g. Fig. 5a), a common early
developmental process displayed by sub-canopy leaves but not by
canopy sunlit leaves, which has confounding effects for the seven-
variable Peru model (Fig. 5c).

The PLSR regression coefficients (Fig. 4c) and Variable Impor-
tance in Projection (VIP; Fig. 4d) from this optimized reference
model indicated the important spectral domains responsible for
leaf age modeling, which included visible domain (especially
~ 550 nm), red edge (~ 725 nm), NIR (~ 800 nm) and several
water absorption bands (~ 1440 nm, ~ 1700 nm and ~ 1920 nm).
These patterns also matched well with the age-dependent spectral

(a) (b)

(c) (d)

Fig. 3 Leaf age and canopy environments
induced spectra variation at the Brazil site. (a)
Age-dependent leaf level hyperspectral
reflectance across all canopy environments
for: young, mature and old leaves (mean
value in solid lines with shaded 95%
confidence interval). (b) Canopy
environment-dependent leaf level
hyperspectral reflectance across all leaf ages
for: sunlit canopy (n = 224 leaves), shade
canopy (n = 207), mid-canopy (n = 186) and
understory (n = 142). (c) Normalized
differences of young, mature, and old leaf
spectra from the mean leaf spectra (solid
lines� shaded 95% confidence interval). (d)
Normalized environment differences of sunlit
canopy, shade canopy, mid-canopy and
understory leaf spectra from the mean leaf
spectra (solid lines� shaded 95% confidence
interval). Normalized difference = (mean
reflectance within each scenario�mean
reflectance across all scenarios)/standard
deviation of reflectance across all scenarios.
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variation (Fig. 3a,c), providing confidence for our spectra–age
modeling.

The optimized Peru model performance using the Peru testing
data was R2 = 0.83 and RMSE = 55 d compared with R2 = 0.64
and RMSE = 72 d when applied to all Brazilian data (Table S2).
When the Brazil data were separated by canopy environments,
cross-site performance of the Peru model applied to the Brazil
data ranged from high performance in sunlit and shade canopy
leaves and middle-canopy leaves (R2 = 0.77, RMSE = 62 d for
sunlit, and R2 = 0.77, RMSE = 62 d for shade canopy leaves, and
R2 = 0.71, RMSE = 80 d for middle-canopy leaves; Fig. 4 and
Table S2) to lower performance when applied to understory
leaves (R2 = 0.29, RMSE = 101 d for the original Peru model and
R2 = 0.47, RMSE = 90 d for the optimized Peru model) (Fig. 4).
In sum, we found that the greater the disparity in canopy envi-
ronment from that used to train the Peru reference model, the
larger the inaccuracies in leaf age model predictions.

The range of leaf traits affects cross-site model generality

We investigated whether the relatively lower performance of the
Peru-trained canopy sunlit leaf age model for leaves sampled
from canopy environments beyond its original scope was associ-
ated with different suites of traits and/or developmental pathways
not included in the reference model training dataset, and if so,
whether such differences were linked systematically to the

broader range of canopy environments. We found that sunlit
canopy leaves from the two sites largely overlapped in both their
height above the ground (a proxy for growth environment), and
in their trait values, but that sunlit leaves were significantly differ-
ent from understory leaves in growth-environments and leaf trait
values for old leaves (Fig. 6). The presence of ‘reddish’ early
developmental leaves in the middle canopy and understory also
demonstrates the existence of a different developmental pathway.
This environmentally driven divergence in traits (as also seen in
Ellsworth & Reich, 1993; Cavaleri et al., 2010) provides a mech-
anistic basis for improving predictive models of leaf age applica-
ble across canopy environments.

In order to leverage this result, we quantified how model fit of
the optimized Peru reference model (developed for Peruvian sun-
lit leaves) depended on different environments. Deviations of
predictions from observations were characterized by simple linear
regressions for each tree–environment combination (as seen by
regression lines between model predicted and observed ages;
Fig. 7). These regression lines showed systematic deviation from
the 1 : 1 line, with strong dependency on leaf growth environ-
ments: Deviations in canopy sunlit environments (Fig. 7a–d)
usually (three of four trees) followed a slope shallower than the
1 : 1 line, whereas at the other end of the environmental gradient,
deviations in Brazilian understory trees were significantly steeper
than the 1 : 1 line (Fig. 7l–o). Deviations were largest in under-
story environments, whose leaf ages tended to be significantly

(a) (b)

(c) (d)

Fig. 4 Cross-site spectra–age model results for data from both Peruvian and Brazilian sites, based on fitting variation of the Peru reference partial least-
squares regression (PLSR) models to a subset of observations at the Peru site only (i.e. the Peru training dataset). (a) Root mean square error (RMSE)
between observed and modeled leaf age plotted against the number of latent variables incorporated for PLSR models. (b) The proportion of variation in
leaf age explained by PLSR models (R2) plotted against the number of latent variables incorporated. Different symbols in (a) and (b) represent different
datasets, as indicated (see also Table 1): the performance of the original seven-latent variable model for each dataset is indicated by the points in the blue
shaded box in a, b); an optimal model for prediction across sites (RMSE minimized and R2 maximized for Brazil validation datasets not used in model fitting)
emerges for five latent variables (blue box in a, b). (c) Spectral regression coefficients for the optimized PLSR model with five latent variables. (d) Variable
importance in projection (VIP) for the optimized PLSR model with five latent variables (spectral features > 0.8 represent the important spectral regions for
leaf age modeling).
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overestimated in young age classes, but underestimated in old age
classes.

We found that the deviation of leaf age model perfor-
mance could be tied to canopy environments (and to leaf
traits): the deviations, as represented by the variation in the
parameters (slope and intercept) of lines fit to those devia-
tions, were explained systematically by canopy environments,
as captured by branch height (Fig. 8a,c), and by traits (e.g.

LMA, Fig. 8b,d). Therefore, variability in canopy environ-
ments and traits is the source of the lower performance of
the optimized Peru leaf age model when extended to new
canopy environments. This suggests that modeling strategies
that account for variation in traits or proxies for canopy
environment (e.g. branch height) should produce more gen-
eral models of leaf age that are applicable across different
canopy environments.

(a)

(b)

(c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Example of developmental trajectory
in a mid-canopy tree in Brazil (E. uchi_MC),
including: (a) the appearance of leaves vs age
in RGB photos, showing reddish leaves when
leaf ages are 40 d or younger; (b) the aging
of leaves as revealed by leaf reflectance
hyperspectra (measured by an ASD
spectradiometer); and (c) comparison
between spectra–age model coefficients of
seven latent variables (in red) and five latent
variables (in black), (see Fig. 4; as derived
from the model parameterized by Peruvian
sunlit canopy leaves, which do not have
reddish young leaves). Coefficients in the
spectral region marked by the blue window
are near-zero in the five-variable model,
which more accurately predicts leaf age in
three mid-canopy or understory trees: (d)
E. uchi_MC, (e) G. amazonicum_US and (f)
M. ruficalyx_US). The nonzero coefficients in
the seven-variable model make it more
sensitive to reddish shifts in the understory
Brazilian leaves, a confounding effect which
causes significant overprediction of young
leaf age in these same trees when the seven-
variable model is applied (in g–i). See Table 1
for full species names.

� 2016 The Authors

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2016)

www.newphytologist.com

New
Phytologist Research 9



Generalizing the leaf age model across canopy
environments

Four modeling exercises were conducted to explore model gener-
ality across canopy environments in Brazil (Fig. 9), with the opti-
mum five latent variables for ‘Peru Spectra’ and ‘All Spectra’
models and the optimum six latent variables for ‘Peru Spectra+all
Trait’ and ‘All Spectra+all Trait’ models (Fig. S6). The calculated
AIC metric for each modeling scenario showed a consistent, posi-
tive relationship with RMSE, suggesting that RMSE is a good
metric for the cross-model comparison in this study (Table S2).
Relative to the optimized Peru reference model (Fig. 9b), the
‘Peru Spectra+all Trait’ model, which incorporated the covariates
of growth environments and leaf traits, modestly improved over-
all performance for all the Brazil data (R2 = 0.69, RMSE = 74 d
vs R2 = 0.64, RMSE = 72 d for reference; Fig. 9c), but signifi-
cantly improved prediction for Brazilian understory samples (R2

increased from 0.47 to 0.57; RMSE decreased from 90 d to
88 d).

The ‘All Spectra’ model, parameterized by both Peruvian and
Brazilian leaf spectra (Fig. 9d), achieved large performance gains
across canopy environments (R2 increased from 0.64 to 0.79 and
RMSE decreased from 72 d to 53 d for all Brazilian leaves; R2

increased from 0.47 to 0.73 and RMSE decreased from 90 d to
72 d for Brazilian understory leaves).

The ‘All Spectra+all Trait’ model, parameterized by both
Peruvian and Brazilian leaf spectra and traits (Fig. 9e), led to the
best model overall, but, as we hypothesized (H3 from earlier sub-
section ‘Generalizing the leaf age model across canopy environ-
ments), it gave only a modest improvement over the ‘All Spectra’
model overall (R2 increased from 0.79 to 0.81 and RMSE
decreased from 53 d to 50 d; Fig. 9). Specifically, the most signifi-
cant improvement occurred in Brazilian understory leaves (R2

increased from 0.73 to 0.82 and RMSE decreased from 72 d to
60 d; Fig. 9), at the small expense of model performance for
Brazilian canopy shade leaves (R2 decreased from 0.89 to 0.88
and RMSE increased from 48 d to 49 d; Fig. 9).

Discussion

We investigated whether principles of leaf trait ecology and
ontogeny could be used to create a general model relating leaf
spectra to leaf age, taking into account the effect of canopy envi-
ronments. We divided this investigation into two broad ques-
tions: how are leaf traits and spectra related to leaf development
across different sites and canopy environments? Are these rela-
tionships sufficiently consistent to allow a general model to accu-
rately predict leaf age from spectra across sites and various
canopy environments?

How are leaf traits and spectra related to leaf development
across different sites and canopy environments?

Two key findings address this question:
(1) Variation in leaf traits and spectra across all leaves is large
compared to datasets that focus only on sunlit mature leaves.
Our 759 leaves from 11 trees in Brazil encompassed variation in
leaf mass per area (LMA; 35–270 g m�2), leaf water content
(LWC; 42–83%) and near infrared (NIR) reflectance (0.35–
0.64) (Table S1) that covers over 98% of LMA values and 89%
of NIR reflectance values recorded for the much larger dataset of
1449 tree species (6136 leaves) in Asner et al. (2011, 2014).
These results are consistent with those reported at the contrasting
forest site with very different soil condition (Quesada et al.,
2012) in Peru (Chavana-Bryant et al., 2016) and show that such
large variation in traits and spectra can be attributed primarily to
the substantial variation across leaf ages (Figs 2, 3) and canopy
environments (Figs 2, 3, S3).

This finding highlights two important points: first, it empha-
sizes how leaf age (Hulshof et al., 2013; Chavana-Bryant et al.,
2016) and canopy environments (Wright et al., 2004; Asner
et al., 2011, 2014; Serbin et al., 2014) can be key drivers of trait
variation that cause within-species traits to vary as much or more
than variations across species; and second, most relevant for this
study, it confirms that if leaf age varies in concert with leaf traits
and spectra, then sampling leaves for a broad range of traits (and
how they vary with leaf age and canopy environments) may be
more important than sampling many sites or species in develop-
ing a general model for predicting leaf age from spectra.
(2) Leaf traits and spectra vary with both age and canopy envi-
ronments (Figs 2, 3, 6, S3). Previous studies have found that leaf

(a)

(b)

Fig. 6 (a) Branch height probability distribution for Peru and Brazil, with
color symbols indicating branch height for each tree-environment
combination. (b) Leaf trait scatter plot showing leaf water content (LWC)
vs leaf mass per area (LMA) for Peru and Brazil leaf samples from the old
leaf age class (Table 1). Red rectangles in (a) and (b) bound the sample
space for mid- to upper canopy leaves from Peru and Brazil sites.
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age influences leaf traits and spectra (Field & Mooney, 1983;
Kitajima et al., 1997, 2002; Roberts et al., 1998; Wilson et al.,
2001; Yang et al., 2014; Chavana-Bryant et al., 2016) and that
canopy environments influence leaf traits (e.g. Lichtenthaler
et al., 1981; Givnish, 1988; Ellsworth & Reich, 1993; Koike
et al., 2001; Kumagai et al., 2001; Terashima et al., 2001;
Cavaleri et al., 2010; Coble & Cavaleri, 2015; Kenzo et al.,
2015), but this study also finds that understanding their interac-
tion (Figs 2, 3a,b) is particularly important for developing general
relationships between leaf ages and trait-mediated spectra.

These interacting trait–age and trait–environment relation-
ships lay the foundation for addressing our second question (be-
low). This is because the age-dependent and/or environment-
dependent changes in the abovementioned leaf traits and other
related leaf morphological, structural and physico-chemical traits
are known to influence leaf optical properties (Curran, 1989;
Elvidge, 1990; Jacquemoud & Baret, 1990; Carter, 1993; Kokaly
et al., 2009; Asner et al., 2011, 2014; Serbin et al., 2012, 2014;

(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

(l) (m) (n) (o)

Fig. 7 Performance (observed vs predicted leaf age) of the optimal Peru-trained spectral leaf age model (Fig. 4, five-variable model) as applied to Brazilian
samples from four canopy environments: (a–d) sunlit canopy; (e–h) shade canopy; (i–k) mid-canopy; (l–o) understory. OLS regressions (black lines)
quantify the deviation of the scatterplots from the ideal 1 : 1 line (dashed lines). R2 quantifies the fit of the regression line – i.e. the variation in leaf age
explained by combining the optimized Peru leaf age model with the individual tree regressions – and RMSE is the corresponding root mean square error.
See Table 1 for full species names.

Fig. 8 The regression line slopes and intercepts of each tree–environment
combination (from Fig. 7) plotted against branch height and leaf mass per
area (LMA) for the Brazil site: (a) slope vs branch height; (b) slope vs LMA;
(c) intercept vs branch height; (d) intercept vs LMA.
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Yang et al., 2014; Chavana-Bryant et al., 2016). Intriguingly, the
spectrally based species identification study of Lang et al. (2015)
noted a result that leaves from young and adult plants differed
consistently in their NIR spectra, which parallels what we investi-
gated here (and also what is reported in Chavana-Bryant et al.,
2016) across the developmental stages of individual leaves within
adults. This suggests that, ultimately, the spectra–age relationship
in leaves may integrate effects of both individual leaf and whole
plant ontogenies.

Are these relationships sufficiently consistent to allow a
general model to accurately predict leaf age from spectra
across sites and various canopy environments?

In general, we find that the answer to this question is yes, because
leaf traits (co-varying with leaf spectra) are evidently constrained
by ontogenetic physiology and canopy environments. Therefore,
leaf traits and spectra vary systematically and predictably with
leaf age between forest sites thousands of kilometers apart and
across canopy environments. This result emerges from two key
findings:
(1) A single model, developed to predict leaf age from the spec-
tra of sunlit leaves in a southwestern Amazon forest in Peru,

predicts sunlit and shade canopy leaf ages from a central eastern
Amazon forest in Brazil almost as well without recalibration. The
success of the model of Chavana-Bryant et al. (2016) in predict-
ing ages of sunlit and shade canopy leaves across widely separated
sites (Fig. 4a,b) suggests that general rules constrain ontogenic
development within similar leaf growth environments. This is
also true across all tropical leaves (see finding 2, below) once the
differences between canopy environments and associated envi-
ronment-trait linkages are accounted for (Figs 2, 3). The underly-
ing reason, as discussed before, is that key spectral regions were
consistently associated with leaf age (Fig. 3a) and with canopy
environments (Fig. 3b).
(2) Because leaf traits (and hence spectra) vary substantially with
leaf growth environments, a more general model to accurately
predict leaf ages across environments (including both canopy and
subcanopy trees) can be developed (e.g. by incorporating the
samples of wider trait ranges). Leaf ages predicted by the Peru
model deviated from observed ages in a way that systematically
and predictably depended on canopy environments, developmen-
tal pathways and leaf traits (Figs 5–8). In general, understory
leaves exhibited trait values that fell outside the range exhibited
by both the Peruvian and Brazilian canopy leaves. Old-leaf traits
differed for understory leaves (Fig. 6), and young leaves of some

Fig. 9 Performance of leaf age models for the Brazilian leaf samples under five scenarios: (a) the Peru model (parameterized by using Peruvian leaf spectra
only; the same model as presented in Chavana-Bryant et al., 2016 using seven latent variables); (b) the optimized Peru reference model (parameterized by
using Peruvian leaf spectra only); (c) the ‘Peru Spectra+ all Trait’ model (parameterized by using Peruvian leaf spectra and traits); (d) the ‘All Spectra’ model
(parameterized by using both Brazilian and Peruvian leaf spectra); (e) the ‘All Spectra+ all Trait’ model (parameterized by using both Brazilian and Peruvian
leaf spectra and traits). Four different color circles represent the leaf samples from Brazil sunlit canopy (n = 4 trees), Brazil shade canopy (n = 4), Brazil mid-
canopy (n = 3) and Brazil understory trees (n = 4). Four different color lines represent the corresponding ordinary least regression (OLS) between predicted
and observed leaf ages; central grey line represents the OLS analysis for all Brazil samples. The ‘All Spectra’ model (d) is our ‘recommended’ general model.
The number of optimal latent variables in (b) was identified in Fig. 4, and in (c–e) were identified in Supporting Information Fig. S6.
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middle-canopy and understory leaves followed a different devel-
opmental pathway manifesting reddish color in leaves early in
development (Fig. 5). This distinct developmental pathway is
possibly a consequence of strategies for herbivore defense in sub-
canopy tropical leaves based on delay of chlorophyll infusion in
herbivore-abundant environments (Fig. 5a) (Kursar & Coley,
1992; Dominy et al., 2002; Queenborough et al., 2013).

These observations support the ideas of (a) a model that explic-
itly included canopy environments and leaf traits as new predic-
tor variables alongside leaf spectra (Fig. 9), and (b) a model
driven only by leaf spectra, but parameterized by leaves that span
the entire trait range found in diverse canopy environments
(Fig. 9).

Both of these approaches significantly improved model gener-
ality, but the spectra-only model, parameterized by leaves across
all canopy environments, performed better than one fit to the
sun-specific subset of traits. This confirms our hypothesis (H2
from earlier subsection ‘Generalizing the leaf age model across
canopy environments’) that because spectra are jointly influenced
by all leaf traits, whether measured or unmeasured, and therefore
this spectral model had more predictive power because it could
implicitly account for the effects of unmeasured traits.

We highlight three directions for further work on general leaf-
age modeling. First, we note that despite the relatively strong pre-
dictive capacity of our recommended ‘All Spectra’ leaf age model
(Fig. 9d, R2� 0.8 or better), there is still systematic residual vari-
ation between predictions of the spectra–age model and observa-
tions of leaf age. The residuals of the spectra–age model (Fig. S7)
showed a concave nonlinear relationship with observed leaf age,
with both young and old leaf ages being underestimated. This
pattern, evident in both Brazil and Peru datasets (Fig. S7), sug-
gests that even better models of leaf age may be possible with fur-
ther work that identifies the causes of this residual variation, and/
or through the inclusion of additional leaf variation to expand
the range of the modeling approach.

Second, our demonstration here of convergent relationships
across the broad trait variability induced by both leaf develop-
ment and canopy environments across two distinct forests sug-
gests that even leaf samples from a small set of individuals, if
designed to encompass this breadth, may provide a powerful tool
with which to predict leaf developmental trajectories and ages
across additional tropical forests, and even forest systems in other
biomes. Future studies could use multiple sites, biomes and plant
types to investigate the feasibility of developing general, globally
applicable algorithms for leaf age.

Finally, leaf traits and associated spectra evolve with develop-
ment, but the similar developmental stages may be reached at dif-
ferent ages depending on individuals, canopy environments, and
biomes. This suggests that leaves with varying lifespans should be
adjusted to a common developmental trajectory (as in Chavana-
Bryant et al., 2016) in work seeking to generalize models of leaf
age to accommodate for leaves with different lifespans. For
canopy leaves in Peru vs Brazil, the difference between develop-
ment-adjusted age (used for Peru leaves by Chavana-Bryant et al.,
2016) and absolute age (used here for Brazil leaves) was not large,
as indicated by the comparably good age model fits for Peru and

Brazil canopy leaves (Figs 4, 9). However, middle-canopy and
understory leaves can have differences in early developmental
pathways (as we have shown for reddish leaves in this study) and
can have lifespans several folds longer than canopy leaves (Reich
et al., 2004). This implies that for a given absolute age, under-
story leaves are at an earlier developmental stage, leading to an
underestimation of their predicted ages and a decrease in overall
model performance when leaves at different developmental stages
have the same absolute age. This is evident from the steeper
slopes of observed vs predicted age for understory environments
compared to other environments (Fig. 9). We therefore expect
that modeling of middle-canopy and understory leaf age would
be improved by extending observations of these leaves through-
out their life cycle, until senescence (which can take up to several
years). We hypothesize that in general, adjusting leaves with vary-
ing lifespans to a common developmental trajectory would reveal
local (within canopy) to inter-biome convergence in relative leaf
aging processes.

Conclusion

Our results show the convergent correlations among leaf traits,
spectra and age across various tree species, sites and canopy envi-
ronments. These results support the development of a general
spectra–age model and we have shown that this model can effec-
tively predict leaf age across the observed ontogenic and environ-
mental variation. This study has three important implications for
the broader plant science and remote sensing communities.

First, leaf spectra can allow rapid and effective estimation of
leaf ages across tropical forests and various canopy environments.
Our work, building on previous studies of spectral-leaf traits cor-
relations (Asner et al., 2012, 2014; Serbin et al., 2012, 2014) and
age-dependence (Chavana-Bryant et al., 2016), shows that recon-
structing life cycles of multiple physiochemical properties of
leaves across forest sites and canopy environments is possible.
Future spectrally derived studies should give insights into the
fundamental mechanisms that regulate the life cycle of resource
investments and return in leaves.

Second, the convergent spectra–age correlation suggests that
remotely sensed observations using imaging spectroscopy (also
known as ‘hyperspectral’) data could enable the monitoring and
mapping of leaf age compositions across tree crowns and whole
landscapes, and provide insights into temporal dynamics of leaf
age demography in forest canopies. The generality of these corre-
lations across sites and canopy environments also implies that leaf
age dependencies of commonly used vegetation indices (VIs) seen
at the Peru site (Chavana-Bryant et al., 2016), likely affect these
VIs across broad regions. Therefore, remote sensing-based studies
of tropical forest seasonality and phenology should account for
leaf age effects.

Finally, these findings have important theoretical implications.
Leaf traits have been observed to vary substantially over their life
cycles, exhibiting as much or more within-species variation than
between-species variation in both temperate (McKown et al.,
2013; Fajardo & Siefert, 2016) and tropical (Chavana-Bryant
et al., 2016) trees. Our extension of this observation across sites
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and canopy environments suggests that fundamental evolutionary
rules constrain the co-variations among spectra, traits and age
both within and between species, and that studies that seek
insights into these rules (e.g. via analysis of leaf economics;
Wright et al., 2004; Osnas et al., 2013) should be expanded from
their traditional focus on species (generally collected at peak sea-
son) to include various leaf developmental stages and their effects
on key physiological traits.
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