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Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohy-
drological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern
Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf dis-
play for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought
tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with
seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum
stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous
plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly
higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P < 0.05). There was
a significant and positive correlation between species drought tolerance index and species’ seasonal loss in hydraulic conductivity
(P < 0.05), confirming the ecological role of long-distance xylem transport in this seasonally dry tropical forest. Our results reveal
that water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport
system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

Keywords: hydraulic conductivity, leaf phenology, Miombo woodlands, plant-water relations, xylem safety margin.

Introduction

Miombo woodland is the most widely distributed seasonally dry 1997, Filho and Filho 2000, Chapotin et al. 2006, Vico et al.
tropical forest in east and southern Africa (White 1983). This 2015). Typically, leaf shedding occurs at the onset of the long

seasonally dry tropical forest occurs across seven countries ~ dry season, signifying that water limitation may be the principal
(Angola, Congo DR, Malawi, Mozambique, Tanzania, Zambia driver of leaf phenology (Fuller 1999).

and Zimbabwe) in southern Africa. As is the case with many Intriguingly, leaf flush occurs at the peak of the dry season,
other seasonally dry tropical forests, the long dry season is char- approximately 2 months before the onset of the summer rains
acterized by leaf shedding, suggesting that water availability (Chidumayo and Frost 1996, Guan et al. 2014, Ryan et al.
controls patterns of leaf display (Borchert 1994, Williams et al. 2017, Whitecross et al. 2017), suggesting that other factors

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

810z Jaqwieoa( €0 uo Jasn Aselqi peasyallum Aq 6268£05/290AdysAydeal/ca01 0L /10paoBASqE-adIIe-00uBAPR/SAydaa.)/woo dno-olwapeae//:sdiy woll papeojumog


http://orcid.org/0000-0003-0478-2612
http://orcid.org/0000-0003-0478-2612
http://orcid.org/0000-0003-0478-2612

2 Vinyaetal

rather than water stress influence patterns of seasonal leaf display.
Available evidence shows that dry season leaf flush may provide
an advantage to leaves because of enhanced light availability,
reduced herbivory and pathogen pressure (Ryan et al. 2017). Dry
season leaf display in seasonally dry tropical forests has in the past
been attributed to a number of factors including photoperiodicity
(Archibald and Scholes 2007), rise in daily temperatures
(Chidumayo 2001), access to deep soil water reserves
(Sarmiento et al. 1985, Elliott et al. 2006) and stem water storage
(Borchert 1994). Although a number of studies have acknowl-
edged the importance of precipitation in controlling patterns of leaf
display in Miombo woodland (Malaisse 1978, Chidumayo 1994,
Fuller and Prince 1996, Fuller 1999), this physiological process
has never been analyzed in terms of seasonal dynamics of plant—
water relations.

Many authors have demonstrated a link between progressive
impairment of the long-distance xylem hydraulic pathway and
patterns of leaf shedding (Salleo et al. 2002, Brodribb and
Holbrook 2003, Choat et al. 2012). Available evidence sug-
gests that a plant’s ability to cope with water stress is closely
linked to its capacity to withstand strongly negative xylem ten-
sions without allowing air-entry (Cochard et al. 1992, Choat
et al. 2005, Barigah et al. 2013, Brodersen and McElrone
2013, Brodribb et al. 2014). Many studies have shown that
plants prevent the development of runaway embolisms by limit-
ing xylem pressures below the air-entry pressure while at the
same time maximizing stomatal conductance (Tyree and Sperry
1988, Brodribb et al. 2003). Regardless of the conclusions,
these studies suggest the existence of functional coordination
between patterns of leaf display and species ability to maintain a
safe xylem pathway in water-limited ecosystems. We hypothe-
sized that plants’ native embolism resistance influences seasonal
leaf display in water-limited ecosystems. However, little is known
about the relationship between native embolism and seasonal
patterns of leaf display in Miombo woodlands.

In this study, the relationship between seasonal changes in
plant-water relations and patterns of leaf display for nine
Miombo woodland tree species differing in drought tolerance
ability and leaf phenology is evaluated. The main objectives of
this study were to (i) investigate the relationship between sea-
sonal changes in stem water status and patterns of leaf display
for nine principal Miombo woodland tree species; and (i) exam-
ine the interactions between tree species drought tolerance abil-
ity and patterns of leaf display.

Materials and methods

Study site

The study site was Mwekera national forest number 6 (12°51'S,
28°22'E, 1295 m above sea level) located in Kitwe, Zambia.
The main vegetation type was closed Miombo woodland. This

forest type is dominated by the genera Julbernardia, Marquesia,
Brachystegia and Isoberlinia. The vegetation of the study site was
best described as wet Miombo woodland (White 1983,
Chidumayo 1987). The average diameter at breast height was
around 20 cm with a canopy height of 21 m. The forest was last
selectively logged in the 1950s. The study site falls within the
Miombo eco-region, which has a distinct dry tropical climate in
which summer rains fall between November and April (Malaisse
1978). A long dry season lasting 6 months (May—October) fol-
lows. As expected the long-term mean annual rainfall was 1200
mm. Monthly maximum temperature ranged between 25 °C and
34 °C. The soils at the study site were sandy loamy and slightly
acidic with a pH of around 5.

Choice of tree species and field sampling

We sampled nine Miombo woodland tree species representing
six genera, two families and two main phenological characteris-
tics (Table 1). The full botanical and ecological descriptions of
these nine tree species have been adequately presented by
many authors (Fanshawe 1962, Storrs 1979, Palgrave 2002,
Smith and Allen 2004, van Wyk and van Wyk 201 3). All the indi-
viduals sampled in this study came from a uniform woodland
(700 ha) where they shared a common environment. The nine
tree species were selected on the basis that (i) they displayed
contrasting leaf phenology, (ii) they differed substantially in bio-
geographical distribution (Chidumayo 1987, Smith 2001, Smith
and Allen 2004) and (iii) there was no substantial taxonomical
difference between them.

Monitoring of leaf phenology

A total of 225 trees of nine co-occurring species were randomly
selected and tagged (n = 25 trees per species) and their GPS
coordinates recorded to facilitate repeat measurements. Leaf
phenology was monitored in 2 years (May—August 2007 and
April-December 2008). The sample trees were carefully moni-
tored fortnightly, recording timing of leaf fall and flushing. For
repeatability of the measurements, leaf shedding was taken to
be the point at which leaves displayed signs of permanent water
stress (leaf colour changing from green to yellow) and eventual
withering. Leaf flush included both bud break and leaf
emergence.

Measurement of stem—water status

Seasonal changes in stem water status were monitored for the
selected nine species on the same days as leaf phenology data
collection. Pre-dawn water potential (Wpp) was employed to
represent plant-water status. Unlike other methods (osmotic
potential and water content), Wpp is of direct relevance to the
soil-plant-atmospheric continuum and is, therefore, a better
approximation of soil water potential (Borchert 1994, Andrade
et al. 1998, Williams and Araujo 2002). The method of deter-
mining plant water potential involved collection of three to five
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twigs per individual tagged tree in the early hours of the morning
(between 05:30 and 08:00 h local time) on every field visit. The
harvested twigs were immediately covered in wet towels and
sealed in plastic field sample bags. The twigs collected were
long enough to allow for small short segments to be excised
from them for water potential determination and leave a sufficient
portion for hydraulic measurements. The twigs had undisturbed
terminal buds. In the laboratory, small non-transpiring leaf-bearing
distal twig portions were excised, and their ¥pp measured using
pressure chamber method (SKPM 1405, Skye Instruments,
Llandrindod Wells, UK). All segments were kept constantly under
moist-dark conditions prior to Wpp determination. Furthermore,
the time difference between harvesting and actual determination
of Wpp was kept to less than 2 h.

Determination of hydraulic conductivity and native embolism

Seasonal progression of native embolism was measured follow-
ing modified methods of Sperry et al. (1988). At the laboratory,
segments for hydraulic measurements were placed in distilled
water and trimmed to their maximum vessel lengths plus 10%
(Vinya et al. 2012, 2013). Trimmed segments were always
kept submerged under distilled water until their flow rates were
determined. The average segment under-bark diameter was 8
mm. Hydraulic conductivity (Ky) was gravimetrically determined
by inserting the basal end of the trimmed twig into a custom-
built water reservoir with a low delivery pressure head of 2 kPa.
Minimum hydraulic conductivity (Kymin) was determined on
unflushed plant segments. The segments were perfused with
degassed, filtered (to 0.2 um) and acidified (with HCl, pH = 2)
distilled water (Sperry et al. 1988, Kolb et al. 1996). Each seg-
ment was allowed to equilibrate before initial flow rate was mea-
sured. Minimum hydraulic conductivity (Ky min, kg s™' MPa™"
m~") was calculated as

Jv

I M

Kh min = I

where Jy is the flow rate (kg s™") through the segment; AP is

the delivery pressure (MPa); and / is the segment length (m).
Maximum hydraulic conductivity (Ky max) Was derived after

flushing the segments at a pressure of 150 kPa for periods

Table 1. Leaf phenology of the nine Miombo woodland tree species studied.

ranging from 20 to 30 min depending on species and extent of
native embolism. Seasonal loss in hydraulic conductivity (native
embolism) was calculated as

Native embolism (%) = (Kn max— KH min)/ K max X 100 (2)

To confirm that the segments had been completely relieved of
emboli, they were perfused with Safranin dye at the end of each
experiment.

Xylem safety margins

Xylem safety margins were calculated using the fitted species
vulnerability curves (Vinya et al. 2013) and minimum Wpp coin-
ciding with leaf shedding. Xylem safety margins were calculated
as the difference between Wpp triggering leaf shedding and the
water potential threshold associated with xylem air-entry (¥c)
leading to a rapid loss in hydraulic conductivity calculated from
the vulnerability curves. Although a number of plant water poten-
tial points have been employed in computing xylem safety mar-
gin (Meinzer et al. 2009), we chose to use ¥, because it is of
direct physiological relevance to the process responsible for pre-
venting runaway embolism in plants (Tyree and Ewers 1998,
Tyree and Zimmerman 2002).

Data analysis

To answer the question of whether seasonal changes in
stem—water status influenced patterns of leaf display among
Miombo tree species, we used a mixed-effects model (Zar
2010). Given that time-dependent data have a tendency to
exhibit auto-correlation, data were, therefore, tested for ser-
ial correlation using the Durbin—Watson statistics. Where
auto-correlation was detected, the Cochrane—Orcutt proced-
ure was employed to eliminate serial correlation (Ostrom
1990, Chatfield 1997, Schabenberger and Gotway 2005).
A paired t-test was performed to test whether stem water
potential threshold triggering leaf shedding differed from
that responsible for leaf flushing. All statistical analyses
were carried out in Minitab (version 16 Minitab Inc., State
College, PA, USA).

Species Family Phenology
Brachystegia boehmii Benth Fabaceae Deciduous
Brachystegia longifolia Benth Fabaceae Deciduous
Brachystegia spiciformis Benth Fabaceae Deciduous
Erythrophleum africanum (Benth) Harms Fabaceae Deciduous
Pericopsis angolensis (Baker) Meeuwen Fabaceae Deciduous
Brachystegia floribunda Benth Fabaceae Semi-evergreen
Isoberlinia angolensis (Benth) Hoyle & Brenan Fabaceae Semi-evergreen
Julbernardia paniculata (Benth) Troupin Fabaceae Semi-evergreen

Marquesia macroura Gilg

Dipterocarpaceae Evergreen
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Results

Leaf phenology and species classification

There was a significant (P < 0.05) difference in patterns of leaf
shedding between the two functional groups. Deciduous species
shade their leaves within 7 weeks following the onset of the
seasonal drought (Figure 1A). While the proportion of semi-
evergreen tree species shedding leaves spread throughout the
dry season, the drought-deciduous species shed their leaves at
the onset of the dry season (Figure 1A).

For both functional groups, leaf flush was concentrated within
6 weeks at the peak of the dry season. However, leaf flush
occurred within 4 weeks among the drought-deciduous species
and spread over 6 weeks for the semi-evergreen functional
group (Figure 1B).

Stem water status

The water potential thresholds that triggered leaf shedding
and flushing differed significantly (ANOVA; P < 0.001) both
between species and functional groups. On average, deciduous
species dropped and flushed leaves at significantly lower water
potential threshold than co-occurring semi-evergreen species
(Figure 2). Average Wpp triggering leaf shedding varied
between —1.8 + 0.03 and —1.3 + 0.06 MPa among deciduous
and between —1.4 + 0.027 and —0.8 + 0.03 MPa for semi-
evergreen species.

Average Wpp triggering leaf flush varied between —1.31 + 0.04
and —0.7 + 0.03 MPa for semi-evergreen species, and between
—1.7 + 0.04 and —0.8 + 0.07 MPa for drought-deciduous spe-
cies. All deciduous species flushed leaves at significantly (ANOVA,;
P < 0.001) higher stem water potential than that triggering leaf
shedding. Of the four semi-evergreen species, Isoberlinia angolen-
sis and Marquesia macroura displayed an insignificant (paired t-
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test; P > 0.05) difference between stem water potential triggering
leaf shedding and that triggering leaf flush.

Hydraulic conductivity and embolism

There were significant (P < 0.05) differences in seasonal losses
in hydraulic conductivity among Miombo woodland tree species
differing in leaf phenology and drought tolerance ability. Semi-
evergreen species experienced significantly (P < 0.001) lower
seasonal losses in hydraulic conductivity than the deciduous tree
species (Figure 3).

There was a significant negative correlation (R° = 0.58; P =
0.016) between hydraulic conductivity and species maximum
native embolism (Figure 4). Tree species’ drought tolerance abil-
ity (measured as water potential leading to 50% loss in conduct-
ivity) was negatively and significantly correlated (R° = 0.73; P =
0.04) with seasonal loss in hydraulic conductivity (Figure 5).

Xylem safety

Xylem safety margins differed significantly (ANOVA; P < 0.001)
among co-occurring Miombo species. Deciduous tree species
had wider xylem safety margins than the semi-evergreen species.
Among the deciduous species, xylem safety margins ranged
between 0.6 + 0.06 and 1.4 + 0.03 MPa. Xylem safety margins
among semi-evergreen species ranged between 0.09 + 0.03
and 0.5 + 0.05 MPa. Among the semi-evergreen species,
M. macroura displayed the lowest safety margin. There was a
positive and significant correlation (R° = 0.63; P = 0.011)
between xylem hydraulic safety margin and species seasonal loss
in hydraulic conductivity (Figure 6).

Discussion

Seasonal changes in leaf display varied significantly between the
two functional groups (Figure 1). As predicted, the water poten-
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Figure 1. (A) Proportion of trees shedding leaves per functional group; (B) proportion of trees experiencing leaf flush per functional group. n = 225

trees.
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tial threshold triggering leaf shedding and flushing varied consid-
erably both between species and groups despite the two func-
tional groups growing under similar climatic conditions (Figure
2). Leaf shedding followed a pattern of steady decline in plant

Bb BI Ea

water status suggesting that water is one of the decisive factors
dictating patterns of leaf display in this seasonally dry tropical
forest. These results are consistent with findings from other sea-
sonally dry tropical forests (Fanjul and Barradas 1987, Borchert

Species
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Figure 2. Tree species stem water potential triggering leaf shedding and flushing. Bb, Brachystegia boehmii; Bf, Brachystegia floribunda; Bl, Brachystegia
longifolia; Bs, Brachystegia spiciformis; Ea, Erythrophleum africanum; Jp, Julbernardia paniculata; la, Isoberlinia angolensis; Mm, Marquesia macroura; Pa,

Pericopsis angolensis.
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Figure 3. Seasonal dynamics in plant water relations and timing of leaf shedding and flushing in Miombo woodland (averages from May 2007 to

November 2008).
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Figure 4. Relationship between tree species hydraulic conductivity and
maximum native embolism. Crosses represent semi-evergreen and solid
dots represent deciduous tree species. Bb, Brachystegia boehmii;
Bf, Brachystegia floribunda; Bl, Brachystegia longifolia; Bs, Brachystegia
spiciformis; Ea, Erythrophleum africanum; Jp, Julbernardia paniculata; la,
Isoberlinia angolensis; Mm, Marquesia macroura; Pa, Pericopsis angolensis.
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Figure 5. Relationship between tree species drought tolerance ability and
seasonal loss in conductivity. Crosses represent semi-evergreen and solid
dots represent deciduous tree species. Bb, Brachystegia boehmii; Bf,
Brachystegia floribunda; B, Brachystegia longifolia; Bs, Brachystegia spici-
formis; Ea, Erythrophleum africanum; Jp, Julbernardia paniculata; la,
Isoberlinia angolensis; Mm, Marquesia macroura; Pa, Pericopsis angolensis.

1994, Williams et al. 1997). Results of this study render further
support to the functional dependence hypothesis of leaf phen-
ology on stem-water status (Borchert 1994, Sayer and
Newbery 2003, Chapotin et al. 2006).

Interestingly, affected by similar climatic conditions, co-
occurring Miombo woodland tree species differed significantly in
the degree to which they suffered seasonal losses in hydraulic
conductivity (Figure 3). Results of this study are consistent with
studies from other seasonally dry tropical forests (Valdez-
2010, Méndez-Alonzo et al. 2013).
Deciduous species experienced significantly higher seasonal
losses in hydraulic conductivity than co-occurring semi-ever-
green species. Findings of this study suggest that co-occurring
tree species are associated with different adaptive strategies for
preventing catastrophic xylem failure (Urli et al. 2013, Vinya
etal. 2013).

The deciduous species were observed to employ a cavitation
avoidance strategy by shedding the entire canopy at the onset of
the dry season to avoid permanent damage to the long-distance
xylem transport (Figures 1 and 3). As expected, leaf shedding
coincided with minimum seasonal stem—water status and loss in

Hernandez et al.

hydraulic conductivity. In stark contrast, semi-evergreen species
employ cavitation avoidance strategy by maintaining high
hydraulic efficiency throughout the dry season (Vinya et al.
2013). Not surprisingly, the hydraulic safety margins differed
significantly between the two Miombo functional groups.
Differences in cavitation avoidance strategy offer the most plaus-
ible explanation for the observed variation in hydraulic safety
margins between the two functional groups. Further, the
observed trade-off between tree species drought tolerance
index (Wsp) and species seasonal loss in hydraulic conductivity
(Figure 4) suggests that pressure for selection in this water-
stressed ecosystem favours water conservative traits that
enhance species fitness (Elliott et al. 2006, Seghieri et al.
2009). The existence of a trade-off between native embolism
and hydraulic conductivity supports our conclusion (Figure 5).
Additionally, the observed trade-off between xylem safety and
native embolism reinforces the important role that the long-
distance xylem transport plays in influencing leaf display in
Miombo woodland (Figure 6).

A large body of literature demonstrates the functional depend-
ence of leaf display on plant water relations in most forest eco-
systems (Nardini et al. 2001, Vilagrosa 2003). Interestingly, at
the peak of a long dry season (approximately 3 months before
the onset of the rainy season), both functional groups experi-
enced leaf flush, suggesting the decoupling of environmental
cues from leaf display in this seasonally dry tropical forest. Leaf
flush followed a steady rise in stem water potential for all the
nine species studied (Figure 3), suggesting that timing of leaf
flush is primarily endogenously controlled via stem rehydration,
following leaf fall during the dry season. Canny (1998) has
linked dry season xylem rehydration to changes in osmotic
potential mediated through starch hydrolysis. This is consistent
with the observation by many authors who have demonstrated
the role of Minch water in xylem repair following embolism
(Bucci et al. 2003, Salleo et al. 2009).
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Figure 6. Correlation between xylem safety margins and tree species sea-
sonal loss in hydraulic conductivity. Crosses represent semi-evergreen
and solid dots represent deciduous tree species. Bb, Brachystegia boeh-
mii; Bf, Brachystegia floribunda; Bl, Brachystegia longifolia; Bs, Brachystegia
spiciformis; Ea, Erythrophleum africanum; Jp, Julbernardia paniculata; la,
Isoberlinia angolensis; Mm, Marquesia macroura; Pa, Pericopsis angolensis.

Available evidence suggests that Miombo woodland tree spe-
cies accumulate substantial quantities of organic compounds
prior to leaf shedding (Ernst and Walker 1973). Therefore, the
most plausible explanation for the dry season improvement in
stem—water status could be the accumulation of the metabolic-
ally active compounds that hydrolyze into active sugars thereby
lowering the osmotic potential of the nearby parenchyma cells
(Johnson et al. 2012). In turn, localized pressure gradients are
generated that aid in drawing water from the nearby parenchyma
cells adjacent to the vascular bundles. Coupled with low transpir-
ation rates and stomatal conductance in newly developed leaves,
Miombo woodland canopy tree species maintain a favourable
stem—water balance during the dry season (Choinski and
Johnson 1993, Tuohy and Choinsk 1990). Many authors have
demonstrated the accessibility of underground water sources by
trees growing in water-stressed ecosystems (Meinzer et al.
1999, von der Heyden and New 2003). Although underground
water sources may play a critical role in supporting leaf expan-
sion following leaf emergence, the actual role of these water
sources in xylem repair following cavitation remains not well
understood.

Conclusion

Seasonal changes in plant-water relations influence patterns of
leaf shedding and flushing among nine Miombo woodland tree
species. The hydraulically efficient semi-evergreen tree species
with a narrow biogeographical distribution are well adapted to
deal with water stress by maintaining high hydraulic supply,

consequently experiencing low hydraulic losses in the dry sea-
son. On the other hand, deciduous tree species mitigate pro-
blems of water stress by shedding leaves right at the onset of
the dry season to restore the overall integrity of the long-
distance hydraulic supply. Therefore, plant-water relations are a
decisive factor dictating patterns of leaf display in Miombo
woodland. Further, pressure for selection in this seasonally dry
tropical forest favours individuals with water conservative traits.
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