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A B S T R A C T

Fast and automated collection of forest data, such as species composition information, is required to support
climate mitigation actions. Recently, there have been significant advances in the use of terrestrial laser scanning
(TLS) instruments, which facilitate the capture of detailed forest structure. However, for tree species recognition
the structural information from TLS has mainly been used to complement spectral information. TLS-only
classification studies have been limited in size and diversity of plot forest types. In this paper, we investigate the
potential of TLS for tree species classification. We used quantitative structure models to determine 17 structural
tree features. These features were computed for 758 trees of five tree species, including two understory
species, of a 1.4 hectare mixed deciduous forest plot. Three classification methods were compared: k-nearest
neighbours, multinomial logistic regression and support vector machine. We assessed the potential underlying
causes for structural differences with principal component analysis. We obtained classification success rates of
approximately 80%, however, with producer accuracies for three of the five species ranging from 0 to 60%.
Low producer accuracies were the result of a high intra- and low inter-species variability. These effects were,
respectively, caused by a high size-dependency of the structural features and a convergence of structural traits
across species as a result of the individual tree position in the forest canopy and shade tolerance. Nevertheless,
the producer accuracies could be improved through sensitivity vs. specificity trade-offs, with over 50% for
all species being obtainable. The high intra -and low inter-species variability complicate the classification.
Furthermore, the classification performance and best classification method greatly depend on its targeted
application. In conclusion, this study proves the added value of TLS for tree species classification but also
shows that TLS opens up potential for testing and further development of ecological theory.
. Introduction

Forests play a significant role in the mitigation of climate change
hrough their ability to sequester CO2 (Bonan, 2008). Although for-
st ecosystems are resilient, and many species and ecosystems have
dapted historically to changing conditions, future changes are likely to
ccur at rates that are beyond the natural adaptive capacity of the ma-
ority of forest species or ecosystems (Keenan, 2015). The development
f methodologies for monitoring and assessing forests impacted by haz-
rdous natural processes is therefore increasingly important, resulting
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in a demand for fast and automated collection of forest data (Deshayes
et al., 2006).

Tree species information is important for accurate biomass es-
timates, biodiversity studies, gas exchange or forest floor research
(Fender et al., 2013; Vesterdal et al., 2008; Hobbie et al., 2006).
Information on species composition is traditionally summarised in
forest inventories. These inventories are compiled for the effective
management of forested ecosystems, as tree species information sig-
nificantly benefits economic, ecological and technical interests (Gong
et al., 1997).
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Fig. 1. Location and map of Wytham Woods with plot indicated by ‘X’ (The ECN Data
Centre, 2019).

Light detection and ranging (LiDAR) instruments collect 3D point
clouds by emitting laser pulses and recording the time it takes for the
pulse to return. From the range and the angle of the laser pulses the
(x,y,z) coordinates are determined. Analysis of this data can provide
information on the organisation and structure of trees. Most LiDAR-
based species classification studies use airborne laser scanning, but
since the early 2000s, there has been a growing interest in terrestrial
laser scanning (TLS) as a tool for individual tree and forest plot mea-
surements (Newnham et al., 2015). However, tree species classification
from TLS data has only featured in a few studies (Puttonen et al.,
2010). For instance, Othmani et al. (2013) focused on the 3D geometric
texture of bark to classify 75 trees of five tree species (hornbeam, oak,
spruce, beech, pine) using the random forest algorithm. They were
able to obtain an average overall classification accuracy of 85% ± 5%.
More recently, Lin and Herold (2016) classified 40 trees (comprised
of four species) based on explicit tree structure parameters using the
support vector machine algorithm, obtaining a maximum total accuracy
of 90.0% and a robust total accuracy of 77.5%. A study with a larger
sample of 1200 trees and a more automatic solution was presented
by Åkerblom et al. (2017). They applied quantitative structure models
(QSMs) to obtain structural features of the tree and used these for
171
Fig. 3. Stem distribution of all the trees in the 1.4 ha study area. The colours dark
blue, turquoise, yellow, purple and red represent the tree species ACERPS, FRAXEX,
CORYAV, CRATMO and QUERRO respectively. The size of the circles is relative to the
DBH of each tree. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

tree species classification. QSMs are cylinder models which are solely
reconstructed using the cartesian (x,y,z) coordinates of the 3D point
cloud data. QSMs can approximate the branching structure, geometry,
and volume of the trees and store geometric and topological properties
from which features can be derived (Raumonen et al., 2013; Calders
et al., 2015a).

The results of Åkerblom et al. (2017) show that by using single
species forest plots for training and testing, it is possible to achieve an
average classification accuracy above 93%. However, for their prelim-
inary mixed-species forest plot testing, accuracy was lower as neither
the classification method parameters or the feature combination were
optimised.

We build on the work of Åkerblom et al. (2017) to further test and
explore the automated tree species recognition algorithm for mixed
species stands including tall as well as understory tree species. We
aim to test a classification based only on TLS data in a mixed forest
discriminating the five main tree species present: Acer pseudoplatanus,
Fraxinus excelsior, Crataegus monogyna, Corylus avellana, Quercus robur.
We use structural information, in the form of structural features, from
760 trees to classify these tree species. We do this by first computing
Fig. 2. Point clouds of the five main tree species in Wytham Woods coloured by height. From left to right: ACERPS, FRAXEX, CORYAV, CRATMO, QUERRO.
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Fig. 4. Illustration of the point cloud and the QSM of an ACERPS tree. The QSM figure is coloured by branching order.
Table 1
Overview of the five main tree species in the 1.4 ha Wytham Woods plot. It includes the number of individuals of each tree species in the dataset, where the amount between
brackets is the amount of dead standing trees of that species. Also the mean DBH [cm] and DBH range [cm] and the mean height [m] and height range [m] are given for every
tree species.

Code # Median DBH [cm] DBH range [cm] Median height [m] Height range [m]

Acer pseudoplatanus ACERPS 570 (20) 18.60 0.50–146.00 16.20 1.67–30.50
Fraxinus excelsior FRAXEX 85 (1) 18.40 3.93–118.00 17.40 2.15–28.60
Corylus avellana CORYAV 68 (2) 8.33 0.50–16.00 7.92 0.89–14.00
Crataegus monogyna CRATMO 28 (3) 9.83 4.09–24.50 8.22 1.48–11.30
Quercus robur QUERRO 37 (2) 67.90 36.60–110.00 19.90 10.00–24.40
and examining the structural tree features for classification. Secondly,
we explore the results of a principal component analysis (PCA) on
these features to gain insight into the key features that can be used
to discriminate the five main tree species. Thirdly, we apply, optimise
and compare k-nearest neighbours (KNN)-, multinomial logistic regres-
sion (MLR)- and support vector machine (SVM)-classifiers and their
parameters for tree species classification.

2. Study area and data collection

Wytham Woods (Oxford, UK) is a 404 ha, ancient semi-natural
woodland and one of the most researched areas of woodland in the
world (Fig. 1). The site has been owned and maintained by Oxford
University since 1942. It is a very managed wood where the older, large
trees tend to have undergone coppicing and there is some intervention
in the understory as well. The mean annual temperature in Wytham
Woods is 9.9 ◦C, and the mean annual rainfall is 744 mm (The ECN
Data Centre, 2019; Butt et al., 2009).

The study area is a 1.4 ha plot in Wytham Woods and is part of
an 18-ha long-term Smithsonian forest inventory plot run by Oxford
University (Forest GEO Global Earth Observatory Network, 2019). The
local origin coordinate (0,0) was measured with differential GPS and
located at 51◦46′30.2088′′N and 1◦20′20.5692′′W. The 1.4 ha plot has
SW-coordinate (0, 100) and NE-coordinate (140, 200).

The forest consists of about 23 species but is dominated (approxi-
mately 96%) by five tree species. More specifically, Acer Pseudoplatanus
(ACERPS, Sycamore), Fraxinus excelsior (FRAXEX, European/Common
ash) and Crataegus monogyna (CRATMO, Common hawthorn) constitute
88% of the trees. Another 8% is Corylus avellana (CORYAV, Common
Hazel) and Quercus robur (QUERRO, Pedunculate/English oak). Exam-
ple point clouds of the observed tree species can be found in Fig. 2.
As some of the trees are not assigned species or are dead, the dataset
consists of 760 identified and living trees of which 550, 84, 66, 35
and 25 trees are ACERPS, FRAXEX, CORYAV, QUERRO and CRATMO
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trees respectively. Additional information on these five tree species
in the 1.4 ha Wytham Woods plot can be found in Table 1. For all
species (excluding QUERRO) young and mature trees are included in
the dataset. The stem density in this 1.4 ha study area is 563 stems per
hectare. The distribution of the stems of the different species and their
DBH is represented in Fig. 3.

TLS data were collected by Calders et al. (2018) in leaf-off con-
ditions with a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser
Measurement Systems GmbH). The instrument has a wavelength of
1550 nm and a nominal beam divergence of 0.35 mrad. The angular
sampling for both zenith and azimuth angle is 0.04◦ and the azimuth
and zenith range are 0◦–360◦ and 0◦–130◦ respectively. The plot was
scanned in a 20 × 20 m regular grid. Individual trees were extracted
with the semi-automatic approach Treeseg (Burt et al., 2019). Full
details on the tree segmentation can be found in Calders et al. (2015b).
The QSMs were reconstructed from the co-registered TLS data with an
approach building on the TreeQSM method by Raumonen et al. (2013)
and Calders et al. (2015b), which fits cylinders to the point cloud
data following the branch structure of each individual tree (Raumonen,
2019).

3. Methods

3.1. Feature extraction

QSMs contain substantial geometric and topological data including
branching structure. This is illustrated by the point cloud of a single
tree and its QSM in Fig. 4. We extracted 17 structural features from
the QSMs of 760 trees. Fifteen structural features were based on those
defined by Åkerblom et al. (2017) and two additional features were
added.

Because the dataset consists of a wide range of stem diameters
for four of the five species, we investigated normalisation of features
as a function of the DBH. Using DBH-normalised features effectively
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Table 2
List of the structural tree features, initiated on the description of Åkerblom et al. (2017). In the last column remarks concerning the description and the feature extraction are
added. Adaptation is the adapted form of the feature after feature evaluation to remove size-dependency.

Number Name Description Remarks

1 Stem branch angle Median of the branching angles of the 1st order branches in
degrees. 0 is upwards and 180 downwards (parallel with the
trunk). [◦]

–

2 Stem branch cluster size Average number of 1st order branches inside a 40 cm height
interval for 1st order branches. Each branch can only belong to
one interval.

–

3 Stem branch radius Mean ratio between the 10 largest 1st order branches measured at
the base and the stem radius at respective height.

Adaptation: mean ratio between the 10 largest 1st
order branches measured at the base normalised by the
tree height.

4 Stem branch length Average length of 1st order branches normalised by DBH. Adaptation: average length of 1st order branches
normalised by the tree height.

5 Stem branch distance Average distance between 1st order branches computed using a
moving average with a window width 1 m. If window is empty
average distance in window is set as half of window width.
Normalised by the DBH.

Adaptation: not normalised and no longer unitless
[m].

6 Crown start height Height of first stem branch in tree crown relative to tree height. –

7 Crown height Vertical distance between the highest and lowest crown cylinder
relative to tree height.

–

8 Crown evenness Crown cylinders divided into 8 angular bins. Ratio between
minimum heights of the highest and lowest bin.

When one of the bins is empty, the value is set to zero.

9 Crown diameter/height Ratio between crown diameter and crown height. –

10 DBH/height Ratio between DBH and total tree height. –

11 DBH/tree volume Ratio between DBH and total tree volume. [m−2] –

12 DBH/minimum tree radius Ratio between DBH and the minimum of the vertical bin radius
estimates.

The minimum vertical bin diameter is used instead of
the radius based on the supplementary video of
Åkerblom et al. (2017).

13 Volume below 55% of the tree Relative cylinder volume below 55% of tree height. The volume is the branch volume (trunk not
included).

14 Cylinder length/tree volume Ratio between total length of all cylinders and total tree volume.
[m−2]

The cylinder length is the branch cylinder length and
the tree volume is the volume of the branches (trunk
not included).

15 Shedding ratio The number of branches without children divided by the number
of all branches in the bottom third.

The branches are the stem branches instead of all
branches. Bottom third means the lower third when the
tree is divided in three parts based on the tree height.

16 Branch angle ratio Ratio of the medians of the branching angles of the 1st order
branches and 2nd order branches.

New feature.

17 Relative volume ratio Ratio of the percentage volume within 80 to 90% of the tree height
and the percentage volume within 0 to 10% of the tree height.

New feature.
integrates the DBH-distribution of the trees. Therefore, three out of
nine features that show size-dependency were altered. For the other six
size dependent features no improved linear normalisation was found.
The list of extracted tree features with their description and how their
normalisation was adapted can be found in Table 2.

3.2. Principal component analysis

To obtain an integrated view on the features, we performed a PCA
which uses an orthogonal transformation to convert the set of structural
features into a set of linearly uncorrelated variables called principal
components. All the features were standardised onto the unit scale
using the StandardScaler from the scikit-learn library. The first two most
significant (eigenvalue > 1) principal component axes were retained.
The third component resulted in a very similar division of the species as
173

principal component 1 but with a larger overlap between the species.
Bivariate relationships between traits and principal components were
assessed with Spearman’s correlation coefficient 𝑟. High correlation
coefficients give insight into what the principal components represent
in terms of structural traits.

3.3. Classification

We performed the classification, using 17 structural features and
three different classifiers, on 758 trees of the five main tree species in
Wytham Woods. Two trees were excluded from the dataset before clas-
sification as not all of their structural features could be calculated. The
QSMs of these trees had no more than one branch and these trees were
most likely dead. Feature evaluation revealed that for about half of the
features, young ACERPS and FRAXEX trees showed different structural
feature distributions compared to the mature trees of both species.

Because of this high size-dependency two scenarios were applied. The
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Table 3
Summary of parameter optimisation of the different classifiers. It includes the optimised parameters, their description and
the range or option over which they were optimised. The KNN-, MLR- and SVM-classifiers were implemented using
sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model. LogisticRegression and sklearn.svm.SVC from the scikit-learn library respectively.
Classifier Parameters Parameter description Parameter range

KNN n-neighbours Number of neighbours 1 to 20 in steps of 1
Metric Distance metric Euclidian, manhattan or chebyshev

MLR C Inverse of regularisation strength 0.001 to 100 in logarithmic steps
Solver Algorithm used in the optimisation problem lbfgs, sag or newton-cg

SVM C Penalty parameter 0.001 to 100 in logarithmic steps
Gamma Kernel coefficient 0.001 to 100 in logarithmic steps
Fig. 5. Illustration of nested cross-validation with five outer -and four innerloops. The dataset is split up five times (outerloop) in 20% testing data and 80% training and tuning
data which is subsequently split up four times (innerloop) in 25% tuning data and 75% training data. Optimal parameters are obtained for every innerloop and the best parameter
values are chosen for the outerloop. The mean test score is determined based on the test scores for every outerloop.
first scenario considers five classes representing the five main species.
In order to improve classification in the second scenario ACERPS and
FRAXEX are split into mature and young trees, resulting in 7 classes.
This separation was based on a DBH-threshold of 0.2 m which is the
point where the height stops increasing linearly with the DBH for both
tree species (Butt et al., 2009).

Before the classification we standardised the data so that all features
are given a mean of zero and a standard deviation of one. Nested
cross validation (Fig. 5) was applied to determine the accuracy of
each classifier using fully independent data (Varma and Simon, 2006).
We implemented this process with five splits in the outer-validation
loop and four splits in the inner-loop. In each outer-loop we used the
best parameters of the inner-loops to test the accuracy. Eventually, we
computed mean overall test accuracy scores, the number of correctly
classified trees divided by the total number of trees, over the five
outer-loops for every classifier.

The classification accuracy is not always the most appropriate met-
ric to evaluate the performance of a classifier, especially in the case
of imbalanced datasets or when you want to avoid false negatives at
the cost of false positives (Story and Congalton, 1986; Pozzolo et al.,
2015). Therefore, we also combined the prediction results to obtain
aggregated confusion matrices which give an overview of the error
types we have made during classification (Story and Congalton, 1986).
From the confusion matrices the producer accuracies, which are the
number of correctly classified trees of a species divided by the total
number of trees of that species, were calculated.

In the case of imbalanced datasets the concepts of specificity and
sensitivity are also better suited than the classification accuracy (Newby
et al., 2013). The sensitivity is defined as the fraction of the smallest
group that is correctly identified while the specificity is the fraction
174
of the largest group that is correctly classified. Suppose, we have two
species groups, ACERPS (largest group) of which we have 548 trees and
OTHER of which we have 210 trees. Of the OTHER class the classifier
misses 130 predictions (62%) while we still have a classification accu-
racy of 80% because 527 of the 548 ACERPS are correctly classified.
So typically while the classifier achieves a high overall classification
accuracy and good specificity, the sensitivity is poor. We computed
these metrics based on the aggregated confusion matrices assuming
two classes ACERPS and OTHER (FRAXEX + CORYAV + CRATMO +
QUERRO).

The classification was performed for all feature combinations. The
combination with the best accuracy score was selected. For specific ap-
plications the feature combination could be chosen based on a different
performance metric.

3.3.1. Classifiers
As the performance of a classifier often depends on the dataset,

we applied three different classifiers (Duriqi et al., 2016). The first
classification method is the k-nearest neighbour (KNN) classifier where
the object is assigned to the class most common among its k nearest
neighbours (Liao and Vemuri, 2002). A second popular classifier is
the multinomial logistic regression (MLR) classifier which assigns an
observation to the class with the highest probability (James et al.,
2013). Thirdly, we implemented support vector machines with the
linear, polynomial and radial basis function kernels. All classifiers
were implemented in Python (Van Rossum and Drake Jr, 1995) using
the scikit-learn library (Pedregosa et al., 2011). Table 3 summarises
which parameters were optimised and the range over which they were
optimised.
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Fig. 6. Boxplots and swarmplots of the different structural features for all the classes in scenario 2. From left to right in every boxplot: young ACERPS, mature ACERPS, young
FRAXEX, mature FRAXEX, CORYAV, CRATMO, QUERRO. The vertical line inside the box is the median. Box limits give the 1st and 3rd quartiles of the distribution and the
whiskers extend to 1.5 times the distance between the 1st and 3rd quartiles, or the distribution extremes.
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Fig. 6. (continued).
In view of the unbalanced nature of the dataset, the parameter
class_weight, optional for the MLR- and SVM-classifiers, was also stud-
ied. The default option ‘none’ means that all classes have a weight
equal to one while the ‘balanced’ option automatically adjusts weights
inversely proportional to the class frequencies. We applied both modes
for each classifier in each scenario.

4. Results

4.1. Feature evaluation

Univariate test showed that none of the individual features were
significantly different for all observed tree species (Fig. 6). Moreover, a
substantial amount of the structural features showed size-dependency
despite the normalisation procedure introduced.

For example, Fig. 7 shows that the stem branch angle (the median
of the branching angles of the first order branches) is higher and more
variable for small trees (DBH < 0.2 m) but it becomes lower and
consistent for mature trees (DBH > 0.2 m). However, Lin and Herold
(2016) and Åkerblom et al. (2017) explicitly mention normalising by
the height or DBH to reduce the impact of tree age but did not mention
the quality of the normalisation procedure nor any unexplained vari-
ance in the post-normalised data. This high variability for small trees
and more constant values for larger trees was mainly observed for the
tall tree species, ACERPS and FRAXEX, of which small and large trees
were included in the dataset. MacFarlane and Kane (2017) also noticed
that some architectural traits like stem slenderness and relative crown
length and width appeared to be more variable among trees in light-
limited functional groups i.e. young trees being overtopped by the large
dominant trees of the same species. Ultimately, this size-dependency
causes high intra-species variability, increasing classification error.
176
Fig. 7. Scatterplot of Feature 1, the stem branch angle [◦], versus the DBH [cm] of
the tree for the different tree species.

4.2. Principal component analysis

The first two important principal components explain 21.5% and
16.6% of the total variance within the dataset. Small trees in the
understory, which include shrubs and young trees, have a higher PCA1
score than larger dominant trees (Fig. 8). There is also a high positive
correlation of 0.80 between this axis and feature 14, the total branch
length divided by the total branch volume. This feature relates to the
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Fig. 8. The scatterplot of the first two PCA-axes. Colour is according to species with
small trees in a different symbol than large trees of ACERPS and FRAXEX.

branch slenderness which has been proven to be different for different
canopy classes (understory, overtopped versus dominant) and thus
different tree height (MacFarlane and Kane, 2017). MacFarlane and
Kane (2017) note that the branch slenderness is a complex function
of both species and canopy position and likely influences many aspects
of tree function. However, PCA1 is also highly correlated to the crown
start height (the branch free stem height), which resulted in slightly
different values for QUERRO in comparison with ACERPS and FRAXEX,
but is not obviously related to the canopy class. In contrast, the second
axis (PCA2) could be related to shade-tolerance as it shows lower values
for shade-tolerant species, while higher PCA2 values are obtained for
more shade-intolerant trees.

4.3. Classification

For every classification method in both scenario 1 (5 classes) and
scenario 2 (7 classes) a mean test accuracy and aggregated confusion
matrix were obtained. The mean test accuracies for scenario 1 (Table 4)
did not vary much over the different classification methods, with the
lowest score of 80% for the KNN-classifier and the highest score of
82% for the SVMrbf-classifier. T-tests confirm there are only significant
differences between the mean test accuracy scores of the SVMrbf-
classifier and those of the KNN-, SVMlin- and SVMpoly-classifiers (𝛼
= 0.01). The accuracies seem relatively high but are only 8.0% to 10%
higher than the null accuracy (72%) of assuming every tree being the
dominant species. Producer accuracies reveal a different story (Fig. 9a).
These show accuracies above 95% for ACERPS, with little variation
among the classifiers. The latter is most likely due to the large amount
of observations obtained for ACERPS as misclassifying 10 ACERPS trees
will not significantly affect the accuracy ratio. The QUERRO class
is also relatively well classified but more variable, with accuracies
between 69% and 91% depending on the classifier, as there were only
35 QUERRO observations. However, here we need to keep in mind
that the DBH range of this class was limited to large, mature trees,
thus simplifying the classification. The shrub species, CORYAV and
CRATMO have similarly low accuracies between 40% and 60% except
for the KNN-classifier which only classifies 20% of CRATMO trees cor-
rectly. These producer accuracies vary little despite the small amount
177
Fig. 9. Producer accuracies for Scenario 1 (five classes) in the case of default class
weight and for Scenario 2 (seven classes) in the case of balanced class weight. The
species are represented in the order of increasing number of trees in the dataset.

of observations for these species. Very low producer accuracies below
17% are obtained for FRAXEX which is mostly misclassified as ACERPS
(Table 5). These producer accuries can be translated in high specificity
values of more than 95% for all classifiers but low sensitivities ranging
from 35% to 47%. Similar results for scenario 2 show that splitting up
the classes into age groups does not generally improve the mean test
accuracy score (Table 4). There are no significant differences between
the mean test accuracy scores of each method when comparing scenario
1 and 2 (𝛼 = 0.01).

Applying a balanced class weight increases the difference between
different classifiers. T-tests confirm that only the mean test accuracy
scores of SVMrbf and SVMpoly are not significantly different (𝛼 =
0.01) when using balanced class weights. The results of the MLR-
classifier and the SVMlin-classifier were affected most, since the mean
test accuracies were about 12 and 6.9 percent lower for these classifiers
respectively (Table 4). However, a balanced class weight also results
in a shift in producer accuracies which was again largest in the MLR-
and SVMlin-classifiers (Fig. 9). There is a trade-off between the accu-
racy for ACERPS (specificity) and the accuracies of the other species
(sensitivity) (Fig. 9). The mean test accuracies might have diminished
but a balanced class weight translates into more balanced producer
accuracies compared to the default case. Moreover, when the balanced
class weight is combined with scenario 2, the producer accuracies are
even more balanced and all accuracies are above 56% and 58% for the
MLR and SVMlin classifiers respectively (Fig. 9b).

5. Discussion

Principal component analysis revealed that the largest effect on
tree structure is related to canopy class and possibly shade-tolerance
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s

Table 4
Summarising table of the mean test accuracies (%) and their standard deviations (percentage points) obtained for the different classification methods
for both scenarios, in case of default and balanced class_weight. Also the mean test accuracies converted from the confusion matrices of scenario 2
to scenario 1 are shown.

Default class_weight

Scenario 1 (5 classes) Scenario 2 (7 classes) Scenario 2 converted to Scenario 1

Mean test
accuracy (%)

Standard
deviation (pp)

Mean test
accuracy (%)

Standard
deviation (pp)

Mean test accuracy (%)

KNN 79.95 3.06 75.35 2.26 79.29
MLR 80.87 2.95 79.04 2.15 80.87
SVMlin 80.87 1.76 79.29 2.31 81.00
SVMrbf 82.29 1.26 79.55 2.06 81.40
SVMpoly 80.61 2.30 76.67 3.59 80.61

Balanced class_weight

MLR 68.74 3.09 65.59 4.05 68.21
SVMlin 74.03 3.61 69.89 4.27 72.16
SVMrbf 78.50 1.05 75.60 2.78 77.44
SVMpoly 78.88 1.61 72.58 2.08 76.52
Table 5
Aggregated confusion matrix of the SVMlin-classifier in scenario 1 in case of default class_weight and in scenario 2 in the case of balanced class_weight.
The rows are the actual species in the dataset while the columns are the predicted species. The total correctly classified number of trees is given in the
bottom row on the left while the total number of trees is given in the bottom row on the right.

Scenario 1 + Case default

𝐴𝑐𝑡𝑢𝑎𝑙∖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ACERPS CORYAV CRATMO FRAXEX QUERRO TOTAL

ACERPS 540 6 1 0 1 548
CORYAV 33 27 6 0 0 66
CRATMO 9 2 14 0 0 25
FRAXEX 77 5 1 0 1 84
QUERRO 3 0 0 0 32 35

613 758

Scenario 2 + Case balanced

𝐴𝑐𝑡𝑢𝑎𝑙∖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ACERPS_IMM ACERPS_MAT CORYAV CRATMO FRAXEX_IMM FRAXEX_MAT QUERRO TOTAL

ACERPS_IMM 194 7 24 8 47 1 0 281
ACERPS_MAT 8 207 0 2 0 49 1 267
CORYAV 12 0 38 4 12 0 0 66
CRATMO 3 0 4 15 3 0 0 25
FRAXEX_IMM 12 2 7 4 21 1 0 47
FRAXEX_MAT 1 8 0 0 1 26 1 37
QUERRO 0 4 0 0 0 2 29 35

547 758
and not to species as such. However, we need to keep in mind the
limited number of species in the dataset. Nevertheless, this result makes
sense as trees have to adapt to local ecological conditions. MacFarlane
and Kane (2017) state that this adaptation leads to a convergence of
tree traits across species. Ultimately the convergence results in lower
inter-species variation, which complicates classification. These results
support the findings of several studies that show that species that differ
in their maximum height and light demand are found to differ in
architectural traits (Poorter et al., 2006). Tall species grow efficiently
in height to get access to sunlight and they do so by making a slender
stem and a more narrow crown (Thomas, 1996; Kohyama et al., 2003;
Poorter et al., 2003; Aiba and Nakashizuka, 2009). In contrast, small
species enhance current light interception by making wide and long
crowns (Kohyama et al., 2003; Poorter et al., 2003). Young trees of
tall species, however, show more variability in their structural traits
resembling traits of small species.

5.1. Targeted application

Crucial for the evaluation of a classification method is defining an
ultimate objective. However, a specific objective or targeted application
is often missing in classification studies (Fassnacht et al., 2016). In
fact, the definition of optimum classification accuracy varies with the
viewpoint of the user of the application. We might want to monitor the
abundance of Acer pseudoplatanus (ACERPS) because this is a highly
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uccessful invader of semi-natural woodland in Wytham Woods (Butt
et al., 2009). In this case a classification method resulting in a high
producer accuracy for ACERPS (high specificity), such as a bimodal
classifier, equals a successful result. All of the classification methods
with a default class weight satisfy this demand. However, it should
be kept in mind that the high specificity is combined with a low
sensitivity resulting in an overestimation of ACERPS. On the other
hand, we might want to monitor Fraxinus excelsior, which is a keystone
tree species throughout temperate Europe but whose future existence
is threatened by an emerging invasive fungal disease (Pautasso et al.,
2013). Monitoring the abundance of FRAXEX requires high producer
accuracies, and thus a high sensitivity, for this species. The presented
features and classification methods do not fulfil this requirement as the
maximum FRAXEX-accuracy was only 58% for the SVMlin-classifier for
scenario 2 in the balanced case.

Most landscape level classification studies using airborne hyperspec-
tral data, multi-spectral images or airborne LiDAR data cannot take into
account understory tree species or very young trees. For example, Lee
et al. (2016) mention focusing on mapping the six most dominant
canopy tree species because subcanopy species and shrubs are hard to
detect by airborne remote sensing methods. Therefore, the influence of
these trees on classification has not been thoroughly investigated and
the number of tree species classified has been limited. In contrast to
the airborne remote sensing methods, TLS can include subcanopy trees
and shrub species because it is a ground surface observation, although
this viewpoint also results in a suboptimal characterisation of the tree

crown. Nevertheless, surface measurement opens up new avenues for
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ecological studies and in turn a deeper understanding of the structure
of trees enables more efficient classification. In fact, Fassnacht et al.
(2016) recommend that future research efforts should focus more on
this causal understanding of why tree species classification approaches
work under certain conditions and why they do not in other cases.
Our dataset and study are unique as it includes the classification of
understory species and tries to obtain an understanding of the drivers
of the tree structure.

5.2. Data fusion

There was a loss of knowledge at several steps as, firstly, the QSMs
are a summary of the point cloud data. The structural features, which
are fed to the classification and PCA, are in their turn a summary of
the information contained in the QSM. Nevertheless, the information
contained in the 17 structural features is sufficient to obtain moderate
classification results depending on the targeted application. But, these
structural features are clearly not sufficient to separate Acer pseudopla-
tanus and Fraxinus excelsior, which are structurally very similar trees.
This could be the result of the choice or formulation of these features,
which may not be the best ones for describing all the information, caus-
ing the overlap between different species. The normalisation, which
was mainly done by dividing by the DBH or height, could also be in
some cases better and more natural when dividing by another variable,
such as the DBH or height squared. Therefore, other structural measures
should be studied in order to further explore the classification from TLS
data alone. However, the convergence in tree and branch architecture
along a gradient of crowding and shading for individuals of broad-
leaved species as observed by MacFarlane and Kane (2017) makes
species classification, based on solely structural features, difficult.

To achieve good classification results for every application, the
combination of these structural features with other data sources should
be considered. Hyperspectral data has, for example, shown potential for
tree species classification and shown to be complementary to LiDAR
data (Dalponte et al., 2008; Jones et al., 2010; Alonzo et al., 2014).
Fusion of airborne and groundbased data is, however, still a technical
challenge and has not been fully investigated for TLS. Although our
classification method is fully automatic, collecting TLS data to build
the QSMs is time consuming and has only been done for limited areas
of forest. Future development of mobile laser scanning systems can
potentially speed up the data collection process. Moreover, Fassnacht
et al. (2016) showed that there are few examples of tree species
classification over a large geographical extent. They also state that
bridging the gap between current approaches and tree species invento-
ries over these extents still remains one of the biggest challenges of this
research field. Under the explicit assumption that field plots represent
their surrounding environment, field inventory plots have been used
consistently to extrapolate the understanding of the forest structure at
plot level to landscape-to-regional scales. The use of high-resolution
remote sensing is a useful additional data source for extrapolating field
plot forest dynamics to larger scales. Fusion of unmanned aerial vehicle
(UAV) and terrestrial LiDAR data can potentially be used for the 3D
mapping of forest structure at plot to landscape levels, which will be
key for the reduction of uncertainties in forest structure and carbon
estimates (Brede et al., 2019).

Only a few classification studies, such as Korpela et al. (2014),
systematically describe and examine the traits that drive the observed
variance in the remote sensing signal and thereby enable or hamper
species classification (Fassnacht et al., 2016). Our main focus was on
the variance introduced by the tree-size. This size effect has not been
thoroughly investigated in classification before, as only canopy trees
were considered previously due to sensor limitations. However, size
clearly affects the structural features that were used to classify the tree
species. But, the size of the tree is not the only factor which influences
the structure of trees. In the future other influencing factors, such as
the presence of neighbouring trees, competition, wind, soil conditions,
snow etc. have to be taken into account (Holbrook and Putz, 1989;
179

Mäkelä and Vanninen, 1998; MacFarlane and Kane, 2017).
5.3. Limitations and prospects

This study considered every tree of the five main tree species, in-
cluding all sizes and shrub species, of a 1.4 ha plot in a mixed deciduous
forest which has been managed in a specific way. Therefore, the results
might not be applicable to more or less intensely managed woodlands
even of the same species composition. In this study the computed
features were not specifically validated. For the most basic ones, such as
the DBH and height of the tree, there have been many studies validating
automated TLS derivation (Calders et al., 2014, 2015b). Other features
should still be validated, especially the features that concern the top
part of the tree, which are well known to be more occluded in TLS
measurements. However, for the purpose of species classification the
key concern is that computed values can separate the species and
not that the values are correct in absolute terms. Nevertheless, the
classification of species that can only be separated by the top of their
crown need accurate crown characterisation. In this respect, we should
try to find crown features that are robust and less sensitive to poor TLS
data quality. The combination of drone LiDAR could help here if the
TLS and drone point clouds could be successfully combined.

More species from different forest types should be considered for
future studies. Large tropical trees are particularly challenging to re-
construct from TLS data due to the complexity of trunk shapes (e.g. but-
tresses) and to higher occlusion levels in tree crowns (Takoudjou et al.,
2018). The classification of species in an evergreen forest could also
prove difficult due to the presence of leaves which decreases the quality
of the QSMs. In addition, as the structure can be influenced by several
factors, such as the nutrient content of the soil and climatic factors,
future work should test the methodology in different sites and plots to
gain a better view on its applicability.

6. Conclusion

We examined the accuracy of tree species classification, in a mixed
deciduous forest plot including understory species, based on structural
features extracted from TLS-derived QSMs. The analysis revealed two
factors complicating classification. On the one hand, size-dependency
increases intra-species variability while on the other hand the conver-
gence of structural tree traits across species of the same canopy class
and shade tolerance group decreases inter-species variability. Mean
test accuracies around 80% were achieved while producer accuracies
ranged from 0 to 60% for three of the five species. A trade-off between
sensitivity and specificity, was made to improve these producer accu-
racies obtaining more than 57% for all species. However, determining
the classification performance and best classification method greatly
depends on the application. These results bring us one step closer to
the integration of automated species identification from TLS into forest
inventories and thereby contributing to the effective management of
forested ecosystems. The additional information on the specific form of
a tree, presented by the structural features, also gives more insight into
the ecological interactions between trees and their environment. In this
way TLS data opens up potential for testing and further development
of ecological theory.
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