GIANTS IN THE MIST:
the ecophysiology, land-sea interface, and climate
change connections for California’ s Redwoods
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-Vegetation distribution is closely linked to plant response
(physiological & ecological) to
temperature, precipitation, aridity, & combinations of ....

-Western North American ecosystems show a marked association
with local or regional hydrological regimes that are also
intimately linked to climate

-Redwood trees and redwood forests demonstrate some unique
relationships to coastal climate regimes defined by a very
powerful land-sea interface that impacts coastal hydrology
and much more

-Climate change threatens to significantly alter these regimes;
e what will change?
e how will it impact trees and ecosystems?
e how will it impact the climate-tree-hydrology nexus?



Approach

¢y  We' ve been investigating plant/ecosystem response to climate
and climate change requiring us to know: -

» how plants function in response to current and \
also past climate changes to forecast possible future

responses :
WY

~ HI : “ L
» what climatic factors shape function and ecology
most and what will change most significantly




Some objectives
=

r » characterize the top climate factors that impact plants
living at the land-sea interface

» characterize plant and ecosystem responses to
these factors

WY

~HI : “ .

» quantify what has changed or will change from data
and climate change models to forecast futures




Land-Sea Interfaces

Are the Earth’ s largest “ecotone”

Comprise ~8% of the Earth’ s surface - between 0.6 and
1.5 million km’ s of coastline (estimates vary because
coastlines are fractal) - largely ignored by terrestrial
ecologists

Are well known sites of material exchange and the
water, organic matter / nutrients subsidize
communities so significantly that organismal diversity
and densities are enhanced (e.g., Gary Polis and co-workers,
1997, 1999, 2003) and therefore the conditions for plant
performance are also likely altered in positive ways



Land-Sea Interfaces

Additiona
“upwel
that inf

ly, near-shore, redwood forests occur near
ing zones” and these zones receive nutrients
uence the nutrient pools (+ productivity)

Some cyanobacteria in upwelling zones fix atmospheric
N, adding to nutrient stocks in these zones

Q: do these subsidies enhance on-shore biogeochemical

cycles,

productivity and/or organsimal function?
—-and -

Q: if climate changes and the strength of the land-sea
connection weakens, what will this mean for
coastal redwoods?
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Arrows
point to
where
| have or will
work

A very large fraction of the Global Biodiversity
Resides in Cloud and Fog Forest Regions
~ MANY are at a land-sea interface ~
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COAST REDWOOD
Sequoia sempervirens

Maximum height: 115.82 m / 380 ft
Maximum diameter: 7.68 m [ 25.2 ft
Maximum volume: 1,205 m’ [ 42,554 ft>

Maximum age: 2,520 years

Remaining old-growth: 4%
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Tallest known tree on Earth;
Hyperion
(115.8m [ 380 ft.)

Redwood
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Tree crowns harbor entire ecosystems ‘aloft’ and create their own microclimate
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S. sempervirens — Coast Redwood
NOW occupies a Mediterranean Climate Zone
(cf. water limited), yet :

e Tallest tree on Earth (115.8 m)
e 2"dJargest tree by mass on Earth
e Fastest growing conifer ever measured
e Sequestering the highest amount of
carbon of any known tree [forest?]

of today’ s Coast Redwood Ecosystem "

Cool coastal temperatures and fog are defining features
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Hours/day
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Precipitation
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Fog water inputs occur when
summer water deficits are
highest (no precipitation)

Plants like water and this
subsidy occurs just when they
need it most = summer

Long, dry days when their
demands for water peak

Johnstone, Roden & Dawson JGR-B (2013)
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Summer Daily Maximum Temperatures:
Northern California
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Summertime mean fog frequency
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Fog frequency = days with 12 hours or more with ceiling heights <400 m
Redwood distribution is at the >9 hrs/day (30% of all days) coastal fog threshold






Fog and precipitation input data as a proportion of total annual water balance
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1991-2011
Orick, California

2000 13% A in rainfall
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Fog Water as a Percentage of Total Precipitation

Where Percent

Hawai'i, N.E. & S.W. Australia 32-43

Columbia, Peru 61-93
Costa Rica, S.E, Brazil 28-41
Panama, S. Africa 8-20+ [27]
[California, N. Chile 33-90+ (summer only) ]
S. Chile, N.E. Mexico 3-25
Namibia 97100 <=>

SOURCES: Clark et al. 1998 ; Dawson 1998; Vitousek 2004
Weathers et al. 1988-2006; Ewing et al. 2009, Bruijnzeel
1992-2010, Dawson and West 2013
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Ecosystem Nitrogen inputs — California and Chile

Nitrogen Concentrations
Cloud and Rain Water
Chiloe Island, Chile

Temperate Cloud Forest
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Dawson and Weathers, unpublished



Next: Determine the importance of fog water to
plant water status and balance over time and space

Approach: Stable isotope analyses of water

sources and plant water a a

Key point: Winter rainfall has a distinct H and O isotope
ratio compared to summertime fog




Study Species

Gaultheria shallon Rhododendron macrophyllum

Polysticum munitum Oxalis oregana

Sequoia
+ 8 others species sempervirens




Methods and analyses

Two-source mixing model was used to
determine proportion of fog
(using H and/or O)
from DRIP

. 6780 . ) /(8780

: 518Orain)

rain

= (5718
P fog — (5 Ovegetation fog
Where: 578Ofog = mean isotope value for each site

(e.g., +5.0 t0 -2.0%.)

0780, .. = mean isotope value for each site
(e.g.,-8.0t0-19.0%)



Hydrogen Isotope Ratio, 82H, %o

Proportion of xylem-water
as FOG
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Transpiration: Heat Ratio Sapflow method
(Burgess et al., 2000, 2001, 2004, 2010)

Probe set

Solar
power

Data logger, “Well-organized”
storage module & multiplexer &
battery in tree wiring set-up
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Xylem pressure potential, MPa
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Simonin, Santiago & Dawson, PC&E, 2009



Photosynthesis is enhanced with fogging (no drip)

Photosynthesis Per Unit Leaf Mass as a Function of
Days Since Water Removal
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4 7 14 21
Days since water removal

Simonin, Santiago & Dawson, PC&E, 2009



Isotope labeling water to estimate foliar uptake over

a full 10-hour night for all forest species

% Contribution of Fog to Leaf Water

50

Estimated Percent of Leaf Water from Fog

Limm et al. Oecologia, 2009
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How does the water get into leaves?

v Via the cuticle? - transcuticular transport
v At the leaf bases? - transport at “leaky” spots
v Via the stomata? - transport through the pore

“plugged”
stomata

Cuticle xs



Fungal endophytes:

are they water wicks?

With hyphae the wettability angles
change

Stomate on
new leaves

Stomate on
2 year old leaf



Height

Transfusion tracheids,

Colonized by fungal
‘endophytes’,

Do no harm and appear
to be involved in a unique
leaf-level symbiotic
relationship

Dawson & Lindow
October 2013, unpublished




BLUE fluorescence indicates

a C-based metabolite moved
into groups of fungal hyphae
and bacterial-fungal consortia
(quorum sensing)

Dawson & Lindow
October 2013, unpublished

Unique plant-based metabolites
taken up by genetically modified
microbes will “fluoresce” when

present and utilized



Fungal endophyte research (two PhD’ s @ UCB):
Who are the fungal groups and taxa are [molecular methods]? - 11 taxa

Can they be cultured? - Yes, 4 can and will be used in targeted inoculations on
trees & foliage to understand their role(s)

What do the fungi get out of it - H,O [yes] N [">N says yes], C[using 3C labeling




Land-Sea Interface " T
investigations since 1991 |

Fog input and importance for plants and watersheds (isotopes)
Fog and its impact of water use, water relations of all plants

Fog and plant carbon balance (trees, forests, in the greenhouse)
Fog and nutrients (N inputs and types)

Fog and foliar physiology including fungal endophytes

Fog climatology and past coastal climatic change

Fog and isotope dendrochronology

Fog and the future of coastal ecosystems



Photo: M. Nicho

What does the future hold and how do we manage for it?
~ Temperatures, Precipitation, Fog, Evaporation ~
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Over the 115 yr. record two periods stand out:

cooler from 1908-1922 and then MUCH warmer since 1980’ s
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Temperature departure (°C)

Mean annual temperature vs. Annual total precipitation
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Mean annual temperature vs. Annual precipitation
Calculated from the 1895-2010 base period
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Predicted temperature increases in the California
Floristic Province relative to 100-year averages

10°C=50°F

Source: Loarie et al. 2008



Fog x TmAx 1951-2006 Interior-Coast Summer Tmax Difference, Fog Freq.
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Use stable isotope dendrochronology coupled with climate analyses

—— Twmax Contrast

Fog Hours
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Fog duration was ~3 hrs greater
(+30%) in the early 20" century
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more favorable physiology (+A'3C)
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July Climate Water Deficit
B 3343--1925 42° NA
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A71.2--1581
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138.1--1316
1315--1263 40° N-
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107.7 --103.8
-1037--998 38° N-
-99.7--97.2
-97.1--93.2
-93.1--89.2
-89.1--83.9
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785-693  36° N

-69.2-3.5

EERER T T T TTOO

Water Deficits almost everywhere! B
124°W  122°W  120°W  118°W  116°W
High resolution climatic water deficit (balance between potential of the atmosphere

to evaporate water and water availability, 1895-2010) projection relevant to
redwoods (From M. Fernandez, in prep.)




Step 1: create a model of
the “bioclimatic
envelope” for coast
redwoods under normal
climate conditions,
based on the observed
current distribution

40

35°

From: from M. Fernandez, H. Hamilton,
T. Dawson and L. Kueppers (2013)

@ Independent evaluation data
- Redwoods SDM for normal conditions
B35%] USDA CalVeg

Step 2: project the
bioclimatic envelope model
in geographic space to
identify where the climate
conditions exist that coast
redwoods require

Step 3: project the
geographic distribution of
the bioclimatic envelope
model in geographic space
under past conditions of
climate extremes




“ ’ « ” . S. sempervirens
Wet" vs. "Dry” only scenarios

40°

Stable

Drier Wetter

35°

-120° -120°
WATER really matters!

From: from M. Fernandez, H. Hamilton, T. Dawson and L. Kueppers (2013)



“Warmer” X “Wet/Dry” world scenarios

Drier
&
warmer

Warmer

-120°

40°

35°

Wetter

&
warmer

-120°

Temperature x Water really, really matter!!

From: from M. Fernandez, H. Hamilton, T. Dawson and L. Kueppers (2013)

S. sempervirens

Stable




Looking ahead
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- Conservation of large tracks of ecosystem the will be essential
- Ecosystems, not just species, must be protected

R il

s

- Water resource protection and management must improve
- Assisted migration should be considered and active (forest)
ecosystem management designed and implemented NOW
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Thank you
Questions?

Comments?




Sapflow (cm/hr)
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Sapflow at the base of the live-crown in Sequoia during both spring ‘fog' events when

vapor pressure deficits (VPD; shown in pink) are:

LOW [wet leaves = fog, blue arrows] VPD massive reverse flows some 38-55 m away

from the sites of foliar absorption are observed]

-- or' --

HIGH [red arrow] VPD one observes higher day- and nighttime sapflow (water loss)

velocities (from Dawson et al. 2007)




June 7-18, 2003

Sonoma Airport Cloud Ceiling Height

Hourly cloud height — Cloud ceiling
Clear skies

Sonoma County 000l
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Johnstone & Dawson, PNAS, 2010




Watch where the blue arrow below is and the flow direction arrows on the tree model

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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From: Ambrose et al., Tree Physiology 2010
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Sap velocity (cm hrt)

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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Sap velocity (cm hrt)

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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Sap velocity (cm hrt)

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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From: Ambrose et al., Tree Physiology 2010
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30 1 — Tree Top (107.7 m)

Sap velocity (cm hrt)
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From: Ambrose et al., Tree Physiology 2010
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Sap velocity (cm hrt)

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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From: Ambrose et al., Tree Physiology 2010
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Sap velocity (cm hrt)

— Tree Top (107.7 m)
Crown Base (31.6 m)
— Tree Base (8.1 m)
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Greenhouse Experiment:

Fog-chamber with a water
atomizer for experimental fogging
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—— Branch Sap Flow
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Time of day

Sap flow in a 5 mm diameter branch of
a redwood sapling exposed to 3 hours of
fog during the night.
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Volumetric soil moisture (%)

Volumetric soil moisture

was measured in the pots
pot using TDR and pots were
covered

Burgess and Dawson, 2004
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