INTRODUCTION

Fire has emerged as a primary threat to tropical forests in the Amazon over the past three decades, in response to a combination of deforestation and increasing severity and frequency of droughts (Cochrane 2003; Chen et al. 2014). Throughout the 20th century, fires were largely restricted to areas experiencing deforestation or existing cleared areas for agricultural maintenance (Alencar et al. 2011), but fires can now spread readily through forests that have not been otherwise disturbed (Morton et al. 2013), dramatically increasing burned areas. Today, during major droughts (including 2005, 2007, 2010 and 2015–2016), forest understory fires affected larger areas in the Amazon basin than deforestation itself (Aragão et al., 2018) – in some years as much as five times larger (Morton et al. 2013). This trend is projected to continue in coming decades, with a greater frequency of Amazon droughts in response to anthropogenic global change (Le Page et al. 2017). Predicting forest responses to fires is increasingly imperative.

However, our understanding of the short- and long-term ecological impact of tropical forest understory fires is poorly developed, which limits assessments of fire impacts on ecosystems and the global carbon cycle (van der Werf et al. 2009; Rappaport et al. 2018). One major source of uncertainty is the variability in rates of tree mortality across diverse forests in response to understory fires, with estimates ranging from <10% to c. 90% (Barlow et al. 2012). Fire intensity clearly impacts tree mortality (Barlow et al. 2012; Brando et al. 2014; Rappaport et al. 2018), but even so, diverse forests can react differently to similar fire intensity (Hoffmann et al. 2009; Barlow et al. 2012; Brando et al. 2019). Forest history likely explains some part of these differences (Barlow & Peres 2008), but underlying fire-related traits may also vary geographically – a contribution which has, to date, been overlooked in the humid tropical forest context where fires are increasing in prevalence.

Among fire-related functional traits, bark is the most amenable to widespread sampling (e.g. (Rosell 2016), and appears broadly to govern fire-driven mortality of tree stems (Harmon 1984). The corky outer bark protects trees from fires by insulating tree cambium and xylem (Michaletz et al. 2012; Rosell 2016; Pausas 2017), thereby reducing mortality from cambial necrosis or cavitation due to excessive heating. Reductions in stem mortality among trees with thicker bark have been extensively described in more flammable systems, like savannas (Trollope & Tainton 1986; Gignoux et al. 1997; Hoffmann et al. 2009, 2012), but variation in bark thickness can also...
determine size- and species-specific differences among trees in their susceptibility to fires even within tropical forests (Barlow et al. 2003; Hoffmann et al. 2009; Brando et al. 2011). However, while bark in savanna and other flammable systems has been the subject of large-scale synthesis (Dantas & Pausas 2013; Pellegrini et al. 2017), the extent and determinants of variation in bark thickness within humid tropical forests are not known, complicating efforts to predict carbon losses in the years following fires.

Known relationships of bark thickness variation to fire history (Pausas 2017) and abiotic drivers (Richardson et al. 2015) allow us to generate informed expectations. The null expectation is that bark is consistently thin and variation therefore minimal. After all, the contemporary literature often assumes that today’s fire return intervals in Amazonia are a historical anomaly (Cochrane 2003), such that fire protection may be unnecessary for tropical forest trees. However, the paleo-literature suggests that some Amazonian forests may historically have burned, at least with relatively low frequency in the drier south and east (Bush et al. 2008; Power et al. 2008). Moreover, within sites, bark thickness varies in tropical forests (Paine et al. 2010), and work in temperate forests has documented patterns of variation linked to rainfall (Richardson et al. 2015) and fire occurrence (Abatzoglou & Williams 2016). A more plausible alternative hypothesis might therefore be that variation in bark thickness across the Amazon is substantial, reflecting varying evolutionary pressures across the basin, especially from fire (Bond & Midgley 2001; Pausas et al. 2006; Pausas 2017) but also from other processes (Rosell 2016). From a more applied perspective, understanding the variability in bark thickness in humid tropical forests will be a key step towards improving spatially explicit predictions of fire-driven tree mortality and the resulting carbon emissions.

Here, we evaluated the extent and degree of variation in bark thickness across Amazonian tropical forests, combining data from a total of 6280 trees in forests in 13 plots (c. 1 ha each), in diverse regions across Amazonia (see Extended Data Fig. 1, Extended Data Table 1), and evaluate variations with respect to climate [annual rainfall and maximum cumulative water deficit (MCWD)], yielding estimates of bark thickness across all Amazonian forests. We then combined these maps of bark thickness with published relationships between bark thickness and tree mortality (Hoffmann et al. 2009; Brando et al. 2011) to evaluate the potential contributions of bark thickness variation to estimates of tree mortality and biomass loss from understory fires in Amazon forests, evaluated against observed tree mortality and biomass loss synthesised from published studies.

MATERIALS AND METHODS

Functional traits and plot-level size class distributions

We measured bark thickness at 13 sites located throughout the Amazon between 2000 and 2013 (see Figure S1). At each site, we sampled all trees in plots to total c. 1 ha of area sampled at each site (see Table S1 for plot dimensions). Trees were identified to species at 12 sites (leveraging existing data) or morphospecies at one. At each tree, diameter was measured at breast height (1.3 m), bark was sampled with a corer at 2–4 points around the trunk of a tree, 0.35 m ± 0.05 m above the ground.

For comparison, where data were available, we also evaluated patterns of tree height and wood density across sites. Because tree height and wood density both contribute by definition to biomass (Chave et al. 2014), systematic variation in these traits can impact patterns of forest biomass (Quesada et al. 2012; Álvarez-Dávila et al. 2017), with downstream effects on estimates of biomass loss. Therefore, we examined these directly to control for their possible contributions to biomass loss estimates; they also provide a useful point of comparison for evaluating the magnitude of variation in bark thickness. Height was available at a subset of RAINFOR-associated sites (with height observations at a total of six sites), with height measurements following published RAINFOR protocols (Feldpausch et al. 2011). Wood density was extracted via the ‘BIOMASS’ R package from a freely available dataset published by Chave et al. (2014), with tree species, genus or family as the lookup for extraction.

Rainfall climatology and fire

Annual rainfall and maximum climatological water deficit (MCWD) was calculated from data from the Tropical Rainfall Measuring Mission (Nicholson et al. 2003; Brando et al. 2014) from 1998 to 2012 at 0.25 degree resolution. Annual rainfall was calculated by summing monthly rainfall products, and averaging across years to determine mean annual rainfall.

MCWD was calculated starting from the first month of the year (south of the Equator = January; north of the Equator = July), when climatological water deficit was defined as 0. Each month, we subtract the theoretical water demand (evaporation plus transpiration) of a typical tropical forest (100 mm monthly rainfall) from the incoming rainfall and add it to the existing water deficit; if the result is > 0 (i.e. there is excess rainfall), we reset the water deficit to 0. After the last month of the year, this yields the CWD for the year. MCWD is defined as the maximum of CWD across all years for each pixel (see also Aragão et al. 2007; Brando et al. 2010).

Fire occurrences were derived via two methods. First, we used the MODIS Active Fires Product (Giglio et al. 2016) at the 1 km scale; we used the Active Fires instead of the Burned Area product because the latter is considered somewhat more sensitive in detecting forest-understory fires that do not generate a typical ash or char reflectance values needed for burned area mapping. Pixels in which fires occurred were considered burned, but were then masked with tree cover from Hansen’s Landsat-based tree cover estimates at a 1 km resolution (Hansen et al. 2013), to eliminate fires directly associated with deforestation from our predictions of fire-driven losses (a known limitation of the Active Fires product for estimating understory fire extent; (Morton et al. 2013). Each year, the burned area map was masked with all areas that experienced deforestation of at least 2% (that year or any previous year). A deforestation threshold of 2% is conservative, with the goal of eliminating direct deforestation fires and focusing instead on forest-understory fires. Overall, we see that fire extent has
declined in MODIS Active Fire detections as deforestation has, suggesting some link, despite our efforts at masking. For this reason, we have also used an independently calibrated estimate of understory fire extent (Morton et al. 2013) (also using data from the MODIS satellite; referred to in figures as ‘Morton’), which is even more conservative in removing deforestation-linked fires. Both fire distribution products detect increases in fire activity during droughts associated with climate anomalies, suggesting that this is a robust finding. However, given the moderate resolution of these satellite-based data products, both likely underestimate the true spatial coverage of wildfires in closed canopy forests. For both products, we re-aggregated burned area to yield an estimate at the resolution of rainfall and MCWD calculations.

Climatological data were produced, extracted at each site and modelled to produce basin-wide estimates of bark thickness using the packages sp, ncdf4, and raster in R 3.2.2. Fire and tree cover data were managed in the same way.

Aboveground biomass
At each site for which we collected tree size and bark thickness, we calculated biomass using the BIOMASS package (Chave et al. 2014) in R 3.2.2, based on species-, genus- or (where necessary) family-level wood density and on plot location (as a proxy for tree height). To scale to basin-wide fire-driven biomass losses, we used a recently published biomass map for forests that integrates remote sensing with field-based biomass estimates from Avitabile & colleagues (2016). Biomass was also resampled to match the scale of the climatological data in R 3.2.2.

Effects of bark thickness on mortality in fires
Rates of mortality in fires were derived from two major studies examining forest tree mortality in fires (Hoffmann et al. 2009; Brando et al. 2011). The first considered the effects of bark thickness on stem mortality of forest trees in fires at the IBGE Reserve outside Brasilia by Hoffmann et al (Hoffmann et al. 2009). We constructed a linear model of tree mortality probability with respect to bark thickness (see Fig. 2b) to model mortality of trees. As the model more representative of the range of forest understory fires (Fig. 2a), we used this for most calculations in the main body of the paper. Second, we also used stem mortality from a fire experiment in the southern Amazon (at Tanguro) for a more detailed data source [see Brando et al. for a formal analysis of these data (2011)]. Here, we considered mortality in the 3 years following a fire as fire-driven mortality, so this should be considered an estimate of short-term committed losses and not an estimate of instantaneous responses to a fire. Probability of mortality was modelled using a general linear model assuming an underlying binomial distribution (each tree survives or dies in/after a fire). Fires at Tanguro were mild during normal years and more intense during drought years (see Fig. 2a), with major effects on tree mortality (see Fig. 2b).

We modelled fire-driven mortality at each site using four different scenarios: (1) real trees, with measured diameters and bark thickness, (2) trees with measured diameters, with bark modelled according to the real community-wide bark allometric constant calculated at each site, (3) tree diameters drawn from an idealised diameter distribution calculated across all sites, and bark modelled according to the real bark allometric constant at each site and (4) an idealised diameter
distribution and bark modelled according to a bark allometric relationship modelled from climate at each site. In each scenario, we modelled the probability of mortality of each tree, from which we calculated proportional mortality and biomass losses.

Because mortality is a stochastic event (described by a deterministic rate), and because we propagated errors in bark allometry and diameter distribution estimates, we bootstrapped each scenario 100 times to calculate average probability of mortality and average biomass losses across sites. Scenarios reproduced qualitatively similar variation in tree mortality with respect to rainfall (see Fig. S6). We followed the same method (scenario 4) to calculate mortality rates and biomass losses across the entire Amazon.

Comparisons with observed mortality and biomass

Predictions were compared qualitatively and quantitatively with data from two meta-analyses of tree mortality in fires from across tropical forests by Hoffmann et al (2009) and Barlow et al (2012). The former included rainfall estimates but no locations, whereas the latter provided a map of study locations included in the synthesis (enabling comparison of rainfall vs. MCWD as drivers of forest tree stem mortality). Biomass loss estimates from Barlow et al (2012) were also used to directly estimate biomass losses (via a relationship between rainfall vs. biomass loss; see Fig. 3b) for comparison with estimates generated via bark–mortality relationships.

RESULTS

Stem and region-level bark thickness varied substantially across the Amazon, constrained by a combination of tree size and climate. On individual stems, bark thickness varied from fractions of a millimetre to more than 4 cm of bark, and average bark thickness ranged from 0.5 mm to > 1 cm across plots. At each site, bark thickness increased with diameter at breast height (DBH; Fig. S2), as expected (Hoffmann et al. 2003). This allometric relationship yields a constant for examining bark accumulation, controlling for tree size (α, where $bark = DBH^\alpha$). Bark accumulation varied with respect to climate (Fig. 1a and b, Figure S3), decreasing most predictably with rainfall ($R^2 = 0.62$, d.f. = 11, $P = 0.0015$; Table S2), providing the first spatial estimate of bark investment across the Amazon (Fig. 1c).

We next aimed to translate this variation in bark as a functional trait into predictions of tree mortality using published estimates linking bark thickness with tree stem mortality following tropical forest understory fires. These estimates are sparse in the literature, with forest work at only two sites, Amazon forests at Tanguro (Brando et al. 2011) and dense woodlands and riparian forests in the cerrado biome at the IBGE Reserve (Hoffmann et al. 2009). Stem mortality decreased with bark thickness and increased with increasing fire intensity (Barlow et al. 2012) (consistent with results from better-studied savanna systems [Williams et al. 1999]; Fig. 2b). However, tropical forests where fires have been studied in detail (Tanguro and IBGE) have experienced relatively low-intensity fires compared to the documented range of fire intensities possible across the Amazon (Fig. 2a).

In reality, stem mortality depends on actual bark thickness, not an allometric constant. Therefore, we also evaluated variations in realised tree bark thickness across sites that arose from variation in tree size across Amazonian forests. Whereas tree density increased markedly with rainfall (Figure S4), diameter class distributions showed no consistent trends (Figure S5). We also examined whether mortality estimates at each field site were sensitive to how we estimated bark thickness. Results were robust to all forms of bark thickness estimation (Figure S6), with no systematic biases introduced by general assumptions about size class distributions, although we note that local variations in tree size distributions might

![Figure 2](link)
nonetheless change fire susceptibility depending on site history (Barlow & Peres 2008).

Thinner bark at high rainfall translated into consistently higher predicted mortality from understory fires (Fig. 3a), which, in turn, translated into increasing biomass loss with rainfall (Fig. 3b). We compared these predictions to observations of stem mortality rates from field observations across Amazonian forest fires (Hoffmann et al. 2009; Barlow et al. 2012), showing that stem mortality and biomass loss rates do actually increase with rainfall (Fig. 3), even more strongly than our modelled estimates. Taken together, these patterns suggest that bark variability may indeed contribute to variability in the effects of fires on forests. Drier forests near the biogeographic limit of Amazonian forests – where, incidentally, most research on the relationship between bark and fire-driven mortality has focused – are substantially more resistant to fires than forests in the wetter core of the Amazon.

We next calculated committed biomass-C fluxes across all Amazonian forests across years. The net result of incorporating variable bark into our predictions (from Fig. 1) was a 57.6% increase over constant-bark estimates in the basin-wide understory fire-driven biomass loss, with estimates that more closely match biomass losses estimated directly from plot-level mortality observations (Fig. 4; plot-level estimates in Fig. 3a). Trends and variation are evident through time, with overall decreases in fire extent based on MODIS active fires, likely reflecting decreases in deforestation-associated fires during the study period, and dramatic increases in fire extent during drought years (e.g. 2007 and 2010). Summing potential losses across years (see Fig. 4) yielded a total fire-driven aboveground biomass loss estimate ranging from 0.67 to 5.86 giga-tonnes of CO$_2$ (0.18 to 1.60 gT C) to the atmosphere between 2001 and 2010.

DISCUSSION

Here, we find that tree investment in bark varies across Amazonian tropical forests, with thicker bark in dry forests and thinner in wetter forests. Combining these patterns with published relationships between bark thickness and tree mortality (Hoffmann et al. 2009; Brando et al. 2011) suggests that fire-driven tree mortality and biomass loss are greater in wet forests than in dry ones, which is also supported by our synthesis of observed post-fire tree mortality across the Amazon. Overall, thinner bark in wetter tropical forests may make these forests more sensitive to fire, which substantially changes estimates of fire impacts on the Amazon-wide carbon cycle. This fuller understanding of bark variability is likely to improve estimates of the fire-driven carbon cycle in tropical forests.

Variation in bark investment across tropical forests raises an intriguing question: Why are there thick-barked species in forests at all (Paine et al. 2010)? One possibility is that fire may have been historically widespread (if infrequent) in drier tropical forests, making thick bark advantageous. Certainly, the paleo-fire literature suggests that fires probably did occur in the Amazon before the modern era in drier Amazonian forests (Bush et al. 2008; Power et al. 2008) and much less so wetter ones (McMichael et al. 2012). Patterns of bark investment observed here are roughly consistent with this, suggesting that fire may have had some ecological and evolutionary importance at the margins of Amazonia. Another possibility is that the functionality of bark is not limited to withstanding fires, and that bark plays a role in drought tolerance (Rosell et al. 2013; Rosell 2016), nutrient and water storage (Richardson et al. 2015), and herbivore and disease defence (Richardson et al. 2015). Drought and water storage hypotheses are weakly supported by the current evidence. First, past work has shown that bark has limited function in mitigating drought susceptibility (Paine et al. 2010). Second, resource storage by bark is usually associated with inner bark (Pausas 2017), not the more insulating corky outer bark (Brando et al. 2011; Micheletz et al. 2012), such that future work should clearly differentiate between these two features. Anecdotally, most of the thick bark in this study was corky, although we did observe a few instances of extremely thick inner bark (see also Roth 1981); that bark was mostly corky is consistent with

Figure 3 Modelled and observed fire-driven tree mortality (a) and biomass loss (b) in response to rainfall. Mortality (Hoffmann et al. 2009; Barlow et al. 2012) and biomass loss (Barlow et al. 2012) observations are drawn from published meta-analyses of field studies across the Amazon, and modelled fire-driven mortality is based on published relationships between tree bark and mortality at Tanguro in mild and intense fires (Brando et al. 2011) and at the IBGE reserve (Hoffmann et al. 2009). Observed fire-driven mortality rates increased with rainfall ($R^2 = 0.290$, d.f. = 24, $P = 0.0045$) more strongly that modelled mortality did. So too did biomass losses ($R^2 = 0.347$, d.f. = 10, $P = 0.044$). Note that in both cases, rainfall was a better predictor of observed mortality and biomass loss than MCWD ($R^2 = 0.121$, d.f. = 15, $P = 0.17$ and $R^2 = 0.331$, d.f. = 10, $P = 0.05$, respectively).
observations at Tanguro (included in this study) that bark thickness overall was more predictive of fire protection than bark traits than bark moisture or density (Brando et al. 2011). However, the defence hypothesis argues that thin bark has evolved to resist pathogens at high rainfall (Richardson et al. 2015) where pathogen loads are heavy (Swinfield et al. 2012), consistent with and potentially contributing to patterns observed here. Mechanisms that lead to bark differences, particularly within forest system, merit further direct consideration.

Of course, important caveats apply, especially relating to the time scales of these patterns and processes. First of all, we have documented decreases in bark thickness only with respect to modern rainfall patterns, without considering any historical or paleo-rainfall distributions. Second, humans have been an important influence on the ecology of the Amazon basin for the past 16,000 years at least, perhaps filtering the composition of marginal Amazonian forests towards the species most tolerant of disturbances from fire (e.g. Heckenberger et al. 2003). Although anthropogenic filtering cannot account for the existence of species with thick bark to begin with (i.e. for standing variation in bark thickness), it may have strengthened existing patterns.

Whatever its evolutionary or ecological origins, patterns of bark investment across the Amazon suggest that fire-driven tree mortality should occur at higher rates in wet forests than in dry ones. These predictions are borne out in real mortality and biomass-loss estimates from understory fires (see Fig. 4), although, curiously, the observed response of mortality and biomass loss to rainfall was even stronger than our models predicted (Fig. 3). There are a number of possible reasons that our models may underestimate high stem mortality rates in wet forests (see also Cochrane 1999; Barlow et al. 2012; Rappaport et al. 2018). One probable contributor is that we have only poorly represented the effects of fires that are intense (at least by tropical forest standards; Fig. 2; Cochrane & Schulze 1999). This highlights a well-appreciated need for ways to quantify fire intensity, especially after fires have already occurred (see, e.g., Rappaport et al., 2018), and for work across a broader range of forests and forest types.

Another possibility is that bark alone does not determine how trees respond to fire (Ryan & Williams 2011). For instance, hydraulic vulnerability may contribute to making the combination of drought and fire potent in killing tropical forest trees (Brando et al. 2014), if drought-induced water stress makes cavitation during fires more likely (Michaletz et al. 2012). Vulnerable hydraulic architecture – common in trees that have not experienced a history of drought or fire and perhaps also in taller forests – and root susceptibility to fires may both merit further examination as a contributor to fire-driven mortality of forest trees. Nonetheless, bark thickness clearly had major impacts on mortality and thus on biomass losses in understory fires.

An increased emphasis on plant functional responses to fire – via bark but also other traits – could further contribute to improving predictions of fire effects on tropical forests. For one, although fires often cause the mortality of the tree stem, they do not always kill the whole individual. Resprouting following fires (Hoffmann et al. 2009) can be widespread, and may dramatically speed forest community and biomass recovery following fires. Resprouting traits are understudied in tropical forests (Clarke et al. 2012), a critical gap if we are to understand the long-term implications of tropical understory fires for the carbon cycle. Conversely, repeated fires may slow post-fire forest succession. Changes in forest structure following an initial burn may predispose forests to additional fires (Barlow & Peres 2008), which in extreme cases can lead to grass invasion and eventual forest savannisation (Silvério et al. 2013), although the generality of this runaway feedback is an issue of some debate (Cochrane 1999). Bark traits may make this more likely, since many of the smaller trees that grow back after fires have thinner bark, and these pioneers are often highly susceptible to subsequent fires (Barlow & Peres 2008).

Here, we provide the first evidence of substantial variation in bark investment across Amazonian forests. Thinner bark in wetter forests provides a convincing explanation for extremely high local tree mortality in understory fires, which improves our understanding of both carbon emissions and biodiversity losses. Together with improved models for fire behaviour, a more comprehensive perspective on how plant functional traits (including bark thickness and resprouting) mediate ecosystem responses to global change will be critical to predicting the future of Amazonian forests and associated climate-carbon feedbacks, including fires (Cochrane 2003). In

Figure 4 Predicted fire-driven losses of aboveground biomass (GtC) across all Amazonian forests, calculated from published estimates of biomass loss (Barlow et al. 2012) (magenta, pink) and modelled assuming constant bark thickness (navy, blue) vs. variable bark (orange, yellow) and a bark–mortality relationship from [Hoffmann et al. 2009]. For constant bark calculations, we assume bark equivalent to our four driest sites, near the southern edge of the Amazon. Fire extent was estimated directly from MODIS Active Fires data (‘MODIS’) (Giglio et al. 2016) and via independent MODIS-derived understory fire distributions (‘Morton’) (Morton et al. 2013). This reveals the effects of extrapolating current and future fire-driven losses from historical fire-driven losses in comparatively fire-tolerant forests. See Methods for detail. Including variations in bark thickness across the Amazon increases predicted fire-driven carbon losses by 57.6 ± 3.9% (see Table S2).
this study, aboveground biomass loss estimates based on varying bark thickness suggest that Amazon understory fires have added between 0.67 and 5.86 gigatonnes of CO₂ to the atmosphere between 2001 and 2010 (Fig. 4), without accounting for regrowth. Ignoring fire-related functional traits thus risks missing a major ecological influence on forest responses to fire, with consequences for predictions of tropical forest impacts on global carbon cycles.

ACKNOWLEDGEMENTS
This work was made possible by a grant (#3413) to ACS and PB from the Gordon and Betty Moore Foundation and by Macrosystems Biology grants from the National Science Foundation (ACS: #1802453; PB: #1802754). We acknowledge help with field work from Madelon Case, Gabriel Hidalgo Pizango, Peter Wragg, Joice Ferreira and Amanda Cardoso.

AUTHOR CONTRIBUTIONS
All authors on this work contributed data, conversation and manuscript feedback. ACS synthesised and analysed data, prepared figures and data products, and wrote the paper.

DATA ACCESSIBILITY STATEMENT
Remotely sensed data are available freely online and RAINFOR plot-level tree size data are available at forestplots.net. https://doi.org/10.5061/dryad.tht76hdx9.

REFERENCES

© 2019 John Wiley & Sons Ltd/CNRS
change increases future fire risk in Amazon forests. *Earth Syst. Dynam.*, 8, 1237–1246.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Editor, Josep Penuelas

Manuscript received 6 August 2019
First decision made 4 September 2019
Manuscript accepted 20 September 2019