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Assessment of forest structure parameters via remote-sensing data offers the opportu-
nity to examine stand parameters and to detect degradation and forest dynamics, such
as above-ground biomass (AGB), at the landscape scale. While much attention has
focused on spectrum-based and radar backscatter approaches for assessing forest
biomass, texture-based approaches show strong promise. This work makes use of the
novel Fourier transform textural ordination (FOTO) method, which involves the
combination of 2D fast Fourier transform (FFT) and ordination through principal
component analysis (PCA) for characterizing the structural and textural properties of
vegetation. This technique presents the potential of Fourier transform approaches in
estimating the different forest types, their stand structure, and biomass dynamics in the
context of an oil palm–tropical forest landscape in Sabah, Malaysian Borneo. The
method was applied to the recordings of very-high-resolution (VHR) Satellite Pour
l’Observation de la Terre (SPOT) imagery of the study area. The technique proved
useful in distinguishing between the forest types and developing individual biomass
estimate models for various forest types. Results show that the FOTO method is able
correctly to resolve high AGB values of various forest types. These findings are in
agreement with the results based on ground measurements.

1. Introduction

Forest biomass indicates the entire volume of leaf, branch, and stem of all trees and shrubs
within the forest ecosystem. Assessing forest biomass, especially the above-ground
biomass (AGB) of forests (in dry weight per unit area), is a useful way of quantifying
carbon stocks that are being stored/sequestered by a given forest type. Study of forest
AGB is also extremely relevant for studying other global biogeochemical cycles and
examining how forests respond to the changing climate and extreme events such as
drought (Malhi et al. 2009). However, the biomass of each forest component varies by
forest type, such as natural or planted forests and closed or open forests (Brown 1997).
This makes ecological and field studies in tropical forests difficult because the presence of
large, inaccessible regions makes it nearly impossible to perform ground surveys (Gibbs
et al. 2007; Pearson et al. 2005), and certain attributes of forest stand parameters, such as
the crowns of large canopy trees, are hard to sample (Barker and Pinard 2001; Chambers
et al. 2007). Moreover, biomass prediction remains challenging, especially in dense and
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heterogeneous tropical forests (Huete et al. 2002). Satellite remote sensing is an appro-
priate tool for vegetation mapping and monitoring, as this method provides vital informa-
tion pertaining to land-use change dynamics at different spatial and temporal scales
(Brioch et al. 2011). Recent advances in remote sensing help overcome the above-
mentioned obstacles and enable landscape-scale evaluation of forest parameters and
dynamics (Ingram, Dawson, and Whittaker 2005; Hawes et al. 2012; Helmer et al. 2012).

AGB estimates derived from satellite imagery involve using vegetation indices,
spectral mixture analyses (Souza, Roberts, and Monteiro 2005; Basuki et al. 2012), and
radar (Morel et al. 2011), but these techniques are hampered by saturation at high AGB
values (Nichol and Sarker 2011; Lu 2006; Woodhouse et al. 2012; Morel 2010). AGB
saturation occurs when values are highly concentrated over a small range, making it hard
to resolve values beyond a given point or the saturation point.

Over recent years, texture-based approaches have been used to generate estimates of
AGB in tropical ecosystems (Wijaya et al. 2010; Lu et al. 2004, 2012; Eckert 2012).
Texture has been used as a generic term to describe image properties such as smoothness,
regularity, and tonal variation (Jong and van der Meer 2004). Describing the texture of
forests, satellite images yield significant information on their structures, thus aiding the
accurate estimation of AGB values in areas with complex forest stand structure. Textural
ordination is one of the spectral approaches that characterize digital images along coarse-
ness–fineness texture gradients (Barbier, Gastellu-Etchegorry, and Proisy 2010). Fourier
transform textural ordination (FOTO) uses a combination of two techniques, namely 2D
fast Fourier transform (FFT) for converting spatial information into the frequency domain
and ordination by principal component analysis (PCA) (Proisy, Couteron, and Fromard
2007). This method can help classify canopy images with respect to canopy grain and can
be used to distinguish between pristine forests and forests with varying logging intensities.
This method is further applied to predict biomass from forest canopy parameters that are
obtained from remote-sensing data (Couteron, Barbier, and Gautier 2006; Ploton et al.
2012). The basic premise of the FOTO method is that frequency signatures relate well to
components of the canopy grain size.

Fourier transforms aid the analysis of the repetitive structure of the canopy by break-
ing the intensity signal into sinusoidal waves of different spatial frequencies, and have
been used as an effective way to analyse specific vegetation data from a wide range of
frequencies obtained from very-high-resolution (VHR) satellite data (Barbier, Gastellu-
Etchegorry, and Proisy 2010). Satellite Pour l’Observation de la Terre (SPOT) data are
then viewed using the ordination method to analyse spatial frequencies within the images
in order to quantify the biomass patterns and intensities and estimate AGB (Barbier et al.
2010; Couteron, Barbier, and Gautier 2006). This is an efficient method for analysing
specific patterns in the forest biomass, including canopies and related textual vegetation in
tropical forest stands (Ploton et al. 2012).

The first major research involving the use of FOTO methods for tropical forests was
published by Couteron et al. (2005). FOTO has also been used to estimate forest structural
parameters and stand parameters of forests in French Guiana (Proisy, Couteron, and
Fromard 2007; Proisy et al. 2012). The FOTO-based model demonstrated better expla-
natory power on several stand parameters, including basal area, and was not limited by
saturation when inspecting dense tropical forests (Ploton et al. 2012). Proisy, Couteron,
and Fromard (2007) used FOTO-derived texture indices to generate a biomass model for
the mangroves of French Guiana. Ploton et al. (2012) applied the same methodology to
generate a FOTO texture indices-based biomass estimate for the Westerns Ghats, India. In
both cases, the FOTO-generated AGB displayed a strong correlation with the field AGB
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measures, indicating that FOTO is a particularly useful tool for generating remote-
sensing-based biomass maps of tropical ecosystems.

This study will deal with a textural approach to estimating biomass with the following
objectives: (1) to distinguish between different land-cover types, including forests of
different logging intensities, oil palm (OP) plantations, and pristine forests using the
FOTO method; (2) to develop texture-based biomass estimate models for the different
land-use types; and (3) to determine whether a fragmented forest ecosystem (in this case
riparian forests) could be distinguished from surrounding contiguous forest types. The
working hypothesis of the paper is that as forest types undergo different levels of
disturbance, ranging from light logging to conversion to OP plantations, the canopy
structure alters due to the changes in the relative dominance of large-diameter trees and
increased dominance of small successional species (in the case of heavily logged forests)
or oil palm trees (in the case of oil palm monocultures). For instance, a visual inspection
of the aerial photos of old-growth (OG) pristine forests, heavily logged forests, and oil
palm plantations in Figure 1 shows that the canopies of these three different forest types
are significantly different from each other in terms of their structure and texture.

Thus, we hypothesize that this change can be detected upon examination of the
textural properties of the forest canopy. In terms of the technique, FOTO has been
implemented according to a detailed methodological description provided by previous
authors such as Couteron, Barbier, and Gautier (2006). While no additional technical
development has been undertaken in terms of the methodology and algorithms, this
research has sought to expand the scope of FOTO for examining an oil palm-dominated
mixed forest landscape which also contains fragmented forest zones.

To our knowledge, this paper demonstrates the first use of 2.5m SPOT data (which
have a relatively higher resolution compared with the VHR data used in the previous
FOTO studies) to distinguish the structure and biomass of forests that have undergone
varying logging rotations, oil palm (OP) monocultures, and fragmented tropical forest
ecosystem (in this case riparian forests), from the surrounding contiguous forests. In this
sense the research also seeks to extend the usage of FOTO to slightly coarser datasets for
studying tropical forest ecosystems; something which has not been undertaken by pre-
vious studies.

(a) (b) (c)

Figure 1. Aerial view (not scaled) of (a) old-growth forests, (b) oil palm plantations, and (c)
experimental area forests (ChienC. Lee, SAFE Project 2011).

International Journal of Remote Sensing 3333
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2. Materials and methods

2.1. Study area and ground control data

This research was undertaken with the Stability of Altered Forest Ecosystems (SAFE)
Project (SAFE Project 2011; Ewers et al. 2011) in Sabah, Malaysia. Figure 2(a) depicts
the relative location of Sabah with respect to the rest of Borneo and the relative location of
the study area in Sabah.

The study area is comprised of a mixed landscape that includes areas of twice-logged
forest (LF); virgin jungle reserve (VJR); oil palm (OP) plantations covering 45,016 ha and
containing palm trees of varying age; 7200 ha of heavily logged area known as the
experimental area (EA), which was earmarked for conversion to OP plantations beginning
in December 2011; and undisturbed, OG, lowland primary forests in the Maliau Basin
Conservation Area (MBCA). Figures 2(b) and (c) depict the layout of the MBCA, the
location of the OG forests, and the layout of the mixed forests in the SAFE area (which in
turn is located in the Yayasan Sabah Forest Concession area).

Figure 2. (a) Location of the study area in Sabah, Malaysia. (b) OG forests in Maliau Basin: lat
4.75, long 116.95. (c) Mixed forests: lat 4.75, long 117.6.
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The EA is located in the Benta Wawasan area, which was last logged in the late 1990s.
Logging was carried out intensively, including trees with diameter at breast height (DBH)
of 30 cm, and effectively the entire pole was removed. The LF/LFE areas are located in
the Ulu Segama river catchment, which has been selectively logged since the 1950s
(Sabah Forestry Department, 2008 from Ancrenaz et al. (2010)). In the proposed OP
concession, 800 ha of forest will be spared clearance and will be maintained in an
arrangement of circular fragments together with a few riparian vegetation zones. The
proposed circular fragments (A–F) have varying levels of forest cover. In addition to the
riparian zones present in the EA, a number of riparian margins are present in the other
land use types, including the OP plantations.

This study made use of the 193 vegetation plots designated previously as part of the
SAFE project. These plots, which were established using the RAINFOR protocols (see
RAINFOR 2012 for more details), measure 25 m × 25 m and are distributed across all
different land-use types including primary forest, various stages of degradation and
logging, and OP plantations (SAFE 2011). One of the main objectives of the establish-
ment of these plots is to quantify the changes in carbon stocks after forest clearance and
fragmentation, and thus, these plots were established across a land-use intensity gradient
from slightly logged and LF stands of heavily degraded forests and OP plantations.
Additionally, some vegetation monitoring plots were located in the unlogged primary
forests in MBCA. Trees having a DBH greater than 10 cm were measured and tagged
(Turner et al. 2012). In this study, we also surveyed the trees with DBH of 2–10 cm in
subset plots. Based on these measurements, a small tree correction was calculated for each
forest degradation type and then applied to the remaining plots. Calculations were
performed using a dry matter approach.

An additional focus of this research was riparian forest plots. A riparian zone is defined
as the land adjacent to streams and rivers. Malaysia contains 189 river systems, including 78
in Sabah. These zones enjoy legal protection and are maintained across all permanent water
courses, although the width of these buffer zones varies according to state laws (Azliza et al.
2012). We established 90 riparian plots measuring 10 m × 50 m in the riparian zones of each
of the different land-use types. For the purpose of creating a carbon inventory and collection
of forest mensuration data, stratified random sampling is known to yield more precise
estimates (MacDicken 1997). Selection of riparian zones and locations of the riparian plots
was performed randomly to capture variation in spatial structure and biomass across the
riparian zones. Three spatially distributed riparian zones were selected per land-use type. In
each of the riparian zones, an additional six plots were set up 3–5 m from the river, with the
50 m side running parallel to the river. Thus, a total of 18 plots were created for each land-
use type. Distances between the plots were not constant but were based on stratified random
sampling, with the river serving as the baseline.

From these plots, forest mensuration data, namely DBH and height, were recorded using
the RAINFOR protocols for all trees with DBH of 2 cm or more. The AGB (Mg ha –1) of
the trees in the riparian and non-riparian zones was calculated using the wet tropical forest
biomass equation recommended by Chave et al. (2005), which is based on datasets from the
tropical forests of Asia, Africa, and South America:

Aboveground BiomassðAGBÞ ¼ 0:0776� ρ� DBH2 � H
� �0:94

: (1)

In this equation, H refers to tree height and 0.0776 refers to wood specific gravity. Where
the species were identified and data were available, species-specific values of ρ were
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taken from Reyes et al. (1992); where the species were not known, a mean value for ρ of
0.57 g cm–3 from Brown (1997) was applied. This equation has been used previously to
calculate AGB in Southeast Asian forests (Morel et al. 2011). Given the difference in the
physiology of OP trees and trees in the forest, specific biomass equations were required in
order to calculate the AGB of OP plantations. The AGB of OP trees was calculated using
the biomass equation recommended by Morel, Fisher, and Malhi (2012):

AGBð ÞTrunk ¼ 100��� r � zð Þ2 � h� ρ0; (2)

where r is the radius of the trunk (cm) without frond bases, z is the ratio of the trunk
diameter below the frond bases to the measured diameter above the frond bases (estimated
to be 0.776 from the sampled trunks), and h is the height of the trunk (in m) to the base of
the fronds. For this equation, ρ’, the trunk density (in kg m–3), was determined as follows:

ρ0 ¼ 0:0076xþ 83=100; (3)

where x is the age of the oil palm plantation. Both the SAFE vegetation plots and riparian
plots are distributed across the SAFE study area, and field AGB values were calculated for
all plots (see Figure 2(c)). In order to avoid the problems of auto-correlation and
collinearity, randomly stratified samples were selected from the plots included in the
study area. For each land-use type, 70% of the plots were selected randomly and used for
calibration, and the remaining plots were used for validation.

2.2. Remote-sensing data

The SPOT-5 image includes five bands, including one panchromatic band with 5 m spatial
resolution; two visible (green and red) bands with wavelengths of 0.5–0.59 µm and 0.61–
0.68 µm, respectively; one near infrared (NIR) band with 10 m spatial resolution with
wavelengths of 0.78–0.89 µm; and one short-wave infrared (SWIR) band with 20 m
spatial resolution (Lu, Batistella, and Moran 2008) with wavelengths of 1.58–1.75 µm.
The 20 m SWIR band is usually resampled to produce a 10 m image. The specific data
acquisition process also allows an image sampled at 2.5 m to be produced from two 5 m
resolution panchromatic images taken simultaneously. The combination of this 2.5 m
image with a third, 10 m resolution image in multispectral mode results in a fused image
composed of three bands (green, red, and NIR) to enhance the spatial resolution of the
SPOT dataset. The 2.5 m SPOT images are thus a three-band colour image with a
panchromatic view. Data fusion (without pan sharpening) of panchromatic bands with
optical bands was performed to yield multi-band SPOT data with a spatial resolution of
2.5 m (Jones and Vaughan 2010). This spatial resolution is sufficient, albeit slightly more
coarse than that in a previous study (Proisy, Couteron, and Fromard 2007). Atmospheric
correction of the satellite data was carried out as a way of compensating for the atmo-
spheric effects of scattering and absorption. This has to be undertaken before classification
and change detection analysis of the images can be carried out. In this study, the dark
object subtraction (DOS) method of atmospheric correction was performed. This is an
image-based absolute atmospheric correction approach and is preferred for change detec-
tion and classification approaches (Foody, Boyd, and Cutler 2003).

3336 M. Singh et al.
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2.3. Fourier-based textural ordination (FOTO)

2.3.1. Background

FOTO belongs to the family of spectral approaches that characterize digital images (such
as those obtained from satellite data) along coarseness–fineness texture gradients (Barbier,
Gastellu-Etchegorry, and Proisy 2010). FOTO makes use of multivariate ordination of
Fourier spectra to classify canopy images with respect to canopy grain. The latter is a
combination of mean size and frequency of tree crowns per sampling window (Ploton
et al. 2012). The FOTO method has been used to distinguish between pristine forests and
forests subjected to varying logging intensities. This method is also useful to predict
biomass from forest canopy parameters obtained from remote-sensing data (Couteron,
Barbier, and Gautier 2006; Ploton et al. 2012). The basic premise of the FOTO method is
that frequency signatures relate well to components of the canopy grain size.

FOTO employs a combination of two techniques: 2D FFT is used to convert spatial
information into the frequency domain, and ordination is performed by PCA (Proisy,
Couteron, and Fromard 2007). Fourier transforms are important in the analysis of the
repetitive structure of the canopy to break the intensity signal into sinusoidal waves of
different spatial frequencies. This method has been used to analyse specific vegetation
data from a wide range of frequencies obtained from VHR satellite data (Barbier,
Gastellu-Etchegorry, and Proisy 2010).

SPOT data can be viewed using this ordination method to analyse spatial frequencies
within the images in order to quantify the biomass patterns and intensities and to make
predictions based on this information (Barbier et al. 2010; Couteron, Barbier, and Gautier
2006). This is an efficient method for analysing specific patterns found in the forest
amongst the existing biomass, including canopies and related textual vegetation (Ploton
et al. 2012).

2.3.2. Obtaining radial spectra from a 2D Fourier transform

The 2D Fourier analysis first removes any aspects of the images that are not critical to the
analysis by converting data from the spatial domain to the frequency domain. The isolated
irrelevant features include images related to shadows, water features, and man-made
structures, which are not tied to biomass data. Then, the specific areas, in this case the
different land-use types, are delineated from the whole image. These images are input into
window-sized segments, in which the 2D Fourier spectra are computed. The window size
(WS) is expressed in metres as WS = N.ΔS, where N is the number of pixels in the X or Y
direction and ΔS is the pixel size in metres (Proisy et al. 2012). The output of FOTO and
subsequent biomass maps are directly influenced by WS; a higher WS may lead to the
generation of coarser biomass maps by a factor of N (Proisy et al. 2012). After windowing
the forest images, the individual windows are subjected to a 2D Fourier transformation.

Two-dimensional FFT is applied to sub-samples of VHR to obtain the radial spectra
(or r-spectra) of the different forest types. Fourier r-spectra are computed for each window
image from the remote-sensing data, determining the amplitude of each spatial frequency.
A two-dimensional Fourier transformation allows for the decomposition of the total image
variance according to all possible integer pairs (p, q) of wave numbers along the two
Cartesian geographical directions. When expressed in polar form (Mugglestone and
Renshaw 1998), these values are portions of image variance that is accounted for by a
waveform having a spatial frequency r. These r-spectra are obtained through partitioning
of image variance to different spatial frequency bins. R-spectra describe information about

International Journal of Remote Sensing 3337
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the level of spatial variation in each spatial frequency (Proisy, Couteron, and Fromard
2007). The amplitude of the Fourier transform is squared to obtain the power spectrum,
and the frequency is averaged in all azimuthal directions to produce the r-spectrum. The
variation among the sampled frequencies can be linked with the structure and texture of
the top canopy (Proisy, Couteron, and Fromard 2007). These values allow for the
quantification of coarseness-related textural properties via study of the decomposition of
variance among spatial frequencies. Images with a coarse texture will yield an r-spectrum
that is skewed towards small wave numbers, whilst fine-textured images are expected to
produce more balanced spectra (Couteron et al. 2005).

In this study, the window images of individual land use types were subjected to FFT
using ENVI image processing software to obtain the power spectrum. The r-spectra were
plotted with respect to the frequencies, which are expressed in cycles km–1 (Barbier et al.
2012). Figure 3 illustrates the steps in obtaining the r-spectra of the different land
use types.

2.3.3. Textural ordination of the radial-spectra

A systematic textural analysis is carried out on the power spectrum of the individual land-
use type images. The r-spectra are stacked into a common matrix in which each row
corresponds to the r-spectrum of a given window. Each column contains amplitude values.
These windows may be considered to be statistical observations characterized by their
spectral profiles and may be subjected to ordination techniques, such as PCA (Proisy,
Couteron, and Fromard 2007; Couteron, Barbier, and Gautier 2006; Barbier et al. 2010;
Liu and Mason 2009; Ploton et al. 2012).

Spatial frequencies may be considered quantitative variables that are linearly com-
bined to yield principal components (Couteron et al. 2005). Each principal component
(PC) image represents a linear weighted combination of the original bands:

Figure 3. Obtaining radial spectra of individual land-use classes using the FOTO method (Adapted
from Barbier, Gastellu-Etchegorry, and Proisy (2010).
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PCi ¼
Xm

k¼1

gikBandk : (4)

The first principal component concentrates the features common to all original image
bands. The images are square or rectangular extracts of relevant size, which is typically
about 1 ha, or an area that is increasingly used for field plots to measure AGB in the
tropics. PCA axes ordinate images along coarseness–finer gradients, sometimes also
pointing out the dominant periodicity, if any, that mostly agrees with the visual appraisal
(Couteron et al. 2005). The principal component variances decline sharply with increases
in PC rank. In the case of satellite-based vegetation analysis, bands up to PC3 highlight
the vegetation contrasts. Hence, only the first three PC axes are retained for further
analysis (Liu and Mason 2009). The three most prominent components obtained from
application of PCA are taken as the texture indices (Proisy et al. 2012). The texture
indices obtained from the FOTO method can be subjected to multiple linear regressions to
characterize the spatial structure and texture of vegetation, especially structural parameters
that are connected to the upper canopy (Ploton et al. 2012). Via crown areas, FOTO
results are further correlated with stand parameters such as basal area and diameter at
breast height, rendering these data useful for evaluating the AGB of a given area (Barbier,
Gastellu-Etchegorry, and Proisy 2010). The AGB data obtained from the plots located in
the different land-use types were regressed against these texture indices to obtain biomass
estimate models for the different land use types.

3. Results

In this study, multiple forest types, including OG, forests logged at varying intensities, and
OP plantations, were sampled using remote-sensing data from both riparian and non-
riparian zones. The basic parameters of the plots sampled are shown in Tables 1 and 2.

The FOTO method was applied to sub-samples of VHR SPOT imagery of the
identified plots in Sabah, Malaysia in order to distinguish between the different types of
forest, based on land-use parameters as well as to develop individual biomass estimates
for each. Different land-use types yield different r-spectrum curves and peak frequencies,
as shown in Figure 4.

Furthermore, the r-spectra captured the whole canopy grain gradient, ranging from
pristine OG forests to logged forests to OP plantations. Across the different forest types,
the dominant frequencies varied from 57 cycles km–1 (λ = 17.5 m) for OP to 82 cycles
km–1 (λ = 12.2 m) for riparian forests, and 135 cycles km–1 (λ = 7.4 m) for OG forests to
180 cycles km–1 (λ = 5.55 m) for once/lightly logged forests. This finding suggests that
disturbance increased the dominant spatial dimensions of the canopy texture in the
sampled forests.

Column-wise standardization was performed on r-spectra data. Standardized PCAwas
performed on the unit window. PCA ordination allows for the interpretation of the cloud
of unit windows in terms of canopy grain variation, ranging from fine to coarse scale. The
results of the PCA yielded three prominent axes, which synthesized the majority of the
variability in the data matrix. The first principle component (PC1) explains the largest
percentage (48%) of the variance and appears to capture the fineness–coarseness gradient
of the canopy grain, as depicted in Figure 5. Furthermore, PC2 has the highest value of
riparian forests and the lowest (negative) values for OG forests and OP plantations, which
both have contiguous canopies.
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The first three principal axes were taken to be the texture indices, which, in turn, can
be used to correlate the stand parameters and biomass dynamics of the different land-use
types. According to the research of Couteron et al. (2005), PC1 also acts as a sound
predictive variable to explain the variations in stand structure. Data in our study confirmed
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Figure 5. PCA on FOTO-derived r-spectra. Top: PCA1 vs. PCA2 location of r-spectra of the
different land-use types. Bottom: histogram of Eigenvalues showing the percentage of variance
explained by each PCA axis in sequence (OG, old-growth forests; OP, oil palm plantations; RF,
riparian forests; VJR, virgin jungle reserve; EA, experimental area; LF, twice-logged forests).

Table 2. Above-ground forest parameters across the non-riparian zones (NRF).

(OG)NRF (LF)NRF (EA)NRF

Basal area of trees with DBH >10 cm (m2 ha–1) 65.39 ± 3.1 32.13 ± 13.43 17.14 ± 2.17
Stem density of trees with DBH >10 cm (ha–1) 820 592 417

Note: OG, old-growth forests; LF, logged forest; EA, experimental area.
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Figure 4. Radial spectra of individual land-use classes with respect to frequency (cycles km–1).
OG, old-growth forests; OP, oil palm plantations; RF, riparian forests; VJR, virgin jungle reserve;
EA, experimental area; LF, twice-logged forests.
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this finding. For instance, PC1 explained approximately 30% of the variation in DBH of
OG forest trees and 36.6% variation in the basal area of OG forests. PC1 also explained
28% of the variation in DBH of heavily logged forests and 16% of the variation in the
basal area of this land-use type.

The texture indices were derived in order to generate biomass estimate models for the
different land-use types in the study area. All three FOTO-derived texture indices were
related to field AGB values of the 70% of the plots per land-use type that were randomly
selected (discussed in Section 2.1) using multiple regressions. These analyses were
performed in order to derive biomass estimate models for individual land-use types.
The FOTO-derived biomass estimate equations for the individual land-use type are
detailed in Table 3.

Stands may actually display similar AGB values despite contrasting stages of the
disturbance and distinct canopy textures (Proisy et al. 2002). Hence, a Tukey test was
performed to determine whether the canopy texture-based biomass estimate models
significantly varied across different land-use types. The biomass estimate models varied
significantly between the riparian forests, LF, once/slightly logged forests, and OP
plantations. Unsurprisingly, the biomass values derived from the canopy texture-based
biomass estimate model for OP plantations were significantly different from the other
non-riparian land use texture-based biomass model values. Furthermore, the texture-based
biomass values were significantly different from OG pristine forests, once/slightly logged,
and heavily logged forests. A FOTO biomass map of the SAFE area was created in
Figure 6 using the equations presented in Table 3. The SAFE study site has a significant
proportion of forests that have undergone two or more rounds of logging. FOTO-derived
biomass values indicated that LF have an AGB of 120–155 Mg ha–1, while OP plantations
have the lowest FOTO-derived AGB values, 0–80 Mg ha–1; the lightly logged forests or
the VJR showed very high values for FOTO-derived AGB (180–270 Mg ha–1). Small
patches of unlogged forest tracts have the highest FOTO-derived AGB values, ranging
from 270 to 372 Mg ha–1. These values are in agreement with field AGB values obtained
previously in this region (Morel et al. 2011). A bar graph comparing the differences in
FOTO AGB values of the main land use types is shown in Figure 7.

The FOTO-derived AGB values were validated against the field AGB values, which
were determined from the remaining randomly stratified plots that were not used for
calibration of all land-use types. In order to measure the goodness of fit, R2 values were
assessed for combined and individual land-use types as shown in Figure 8.

Table 3. SPOT texture indices-based biomass equations derived using field AGB values.

Land-use type FOTO texture-based indices R2

Old-growth (OG)
forest

−59.51 × (PC1) − 45.551 (PC2) − 4.936 × (PC3) + 1743.287 0.97

Once/lightly logged
forest (VJR)

−493.51 × (PC1) + 2792.2g(PC2) + 2882(PC3) + 7653.62 0.905

Twice-logged forest
(LF)

−83.44 × (PC1) + 1049.78g(PC2) − 32.13. (PC3) + 289.1 0.811

Heavily logged forest
(EA)

20.71(PC1) + 280.82 (PC2) − 34.47 × (PC3) − 222.1 0.955

Riparian forest (RF) −240.6 × (PC1) − 632.66a(PC2) + 180.47 × (PC3) + 3136.8 0.84
Oil palm plantation
(OP)

−4773.26 × (PC1) + 5171(PC2) − 1817.546(PC3) + 61036.76 0.83
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Initially, regression analysis was carried out for all land-use types, and the FOTO-
derived and field AGB values were strongly correlated (R2 = 0.9795, p = 0.000352). The
difference between the slope of the actual and the expected regression lines was minimal,
and thus the texture-derived indices predict AGB with great accuracy. The FOTO-derived
AGB values showed no evidence of saturation at high biomass values.

FOTO-derived AGB values for individual land-use types were also validated against
field AGB values. Specifically, validation was performed for three individual land-use
types: old growth, VJR, and EA. Regression analysis of FOTO-derived AGB values
against field AGB values yielded slopes that were indistinguishable from 1:1 and with
low scatter (for OG, slope = 1.125 ± 0.0955, R2 = 0.853, p = 0.007; EA,
slope = 0.78 ± 0.051, R2 = 0.9564, p = 0.000131; VJR, slope = 0.945 ± 0.067,

117.372 E,
4.83 N

SAFE and Surrounding Areas

117.372 E,
4.567 N

FOTO AGB (Mg/ha)
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Figure 6. FOTO-generated biomass map of the SAFE area (VJR, virgin jungle reserve; LF, logged
forest; EA, experimental area; OP, oil palm plantations). Blue lines represent the river network in the
area.
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Figure 7. Bar graph comparing the differences in the FOTO AGB values of the main land-use
types. The maroon bars depict the actual variation in FOTO AGB values for the different land-use
types.
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R2 = 0.9608, p = 0.042). The OG and VJR forests also exhibited strong agreement with
the expected regression line and showed little deviation in the slope of expected and actual
regression lines; however, in the case of EA, the FOTO-derived texture indices under-
estimated the ground AGB values by approximately 22%.

4. Discussion

One of the major uncertainties in estimation of AGB in tropical forests, especially in the
context of large-scale land-use change and forest degradation, is the use of allometric
equations (Grainger 2010). A significant challenge is the presence of a complex canopy
structure and saturation of non-textural remote-sensing approaches at high biomass values
(Williams et al. 2011; Malhi and Roman-Cuesta 2008). Direct regressions with optical and
radar data are affected by saturation (Mitchard et al. 2011); however, FOTO allows for the
discrimination of structural and biomass variation in different land use types and avoids
the issue of saturation at high biomass values.

The use of Fourier transforms and subsequent ordination using PCA is the basis of the
FOTO method. The frequency signatures relate effectively to the components of the
canopy grain size (Couteron, Barbier, and Gautier 2006). This methodology has been
effective in representing and analysing the repetitive structure of the canopy. It has been
inferred that r-spectra allow differentiation of the different forest structures in the study
area. For example, riparian forests display a markedly distinct r-spectrum profile com-
pared with other land-use types. Hence, riparian forests may be considered to be structu-
rally different from surrounding, non-riparian land-use types. Similarly, other land-use
types display varying r-spectra and peak frequencies, indicating that the different forest
types have different canopy structures, which, in turn, are reflected in their frequency
signals. The PCA ordination of the r-spectra of the different land-use types also allows for
differentiation between the different forest types and facilitates the description of the
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overall variation in the texture of the different forest types in the study area. This data, in
turn, allows evaluation of the degree of fragmentation and disturbance faced by the
individual forest types. For instance, the PCA1 vs. PCA2 plot indicates that riparian
forest is the least homogenous of forest types and has faced very high levels of fragmen-
tation. This has been verified from ground surveys. In our analysis, PCA1 explained the
largest portion (48%) of the variance and appeared to capture the fineness–coarseness
gradient of the canopy grain, as observed in Figure 5. This, in turn, is linked to the
dominant crown size (Barbier et al. 2012) and corresponds to spatial frequencies of less
than 80 cycles km–1 (wavelength = 12.5 m) for coarser textures to more than 180 cycles
km–1 (wavelength = 5.56 m) for finer textures (Proisy, Couteron, and Fromard 2007).
Other PCA axes may point to a specific range of dominant spatial frequencies, which may
be related to crown or gap sizes (Barbier et al. 2012). Hence, PCA1 represents the
disturbance gradient faced by the different land-use types. On the other hand, the results
suggest that PCA2 explains the degree of fragmentation faced by the different land-use
types. Relatively homogenous/undisturbed forest types such as OG and OP have lower
values for PCA2. Field studies revealed that riparian forests exist as fragmented patches
throughout the landscape and, as such, PCA2 has the highest value for riparian forests and
lowest (negative) values for OG and OP plantations, which have contiguous canopies as
depicted in Figure 5.

Similarly, the results of PCA have been useful in allowing for the examination of the
disturbance–fragmentation gradient of other land-use types. For instance, OG forests and
OP plantations, both of which have a fairly contiguous canopy structure, stretched along
the PCA1 axis. On average, for all the land-use types combined, the FOTO-derived
estimate models predicted the biomass well. The variation in the ability of FOTO to
predict biomass values across different land-use types may be related to the degree of
disturbance and fragmentation. For instance, the EA (for which the FOTO approach
underestimates the AGB) has a high degree of disturbance, and such high heterogeneity
may lead to the calibration dataset being insufficient to capture the degrees of hetero-
geneity within this forest type. On the other hand, both OG and VJR forests have
experienced relatively small disturbance and fragmentation, and the FOTO method
appears to estimate biomass well and consistently. Hence, these findings suggest that
the predictive ability of the FOTO algorithm may be influenced by the degree of
disturbance and fragmentation dynamics of a given forest type.

Overall, this method has proved effective in distinguishing between OP plantations
and the surrounding tropical forest. More importantly, this technique allowed differentia-
tion between forests that have undergone varying logging practices. In addition, this
technique allowed for identification of forests (in this case, riparian forests) that have
become isolated within a given land-use type. Therefore, these analyses indicate that this
methodology is useful in distinguishing between the different levels of disturbance, such
as logging and degradation, across the land-use types within the forest areas. This analysis
achieved the first objective, which was to distinguish between different land-cover types,
including forests of different logging intensities, OP plantations, and pristine forests using
the FOTO method. Furthermore, this study illustrates that the FOTO method has sig-
nificant potential as a system for predicting biomass changes among OP–tropical forest
landscapes in order to track the impact of various logging cycles to better assess the
current and future impact of such activity. As in other studies (Proisy, Couteron, and
Fromard 2007; Ploton et al. 2012), the FOTO method was effective in predicting forest
AGB. As such, this methodology not only provides accurate structural information about
the uppermost portions of the forest canopies but also offers this same level of information
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about sub-canopy characteristics and changes (Ploton et al. 2012), thus satisfying the
second objective, which was to develop texture-based biomass estimate models for
different land-use types. No specific procedures have been developed to provide spatial
and structural information about the conditions of riparian margins (Johansen and Phinn
2006); however, use of the FOTO method in this study has allowed for assessment of the
structure at riparian margins, in addition to ascertaining that these characteristics vary
between riparian and non-riparian zones. These findings satisfied the third objective,
which was to examine the possibility of distinguishing a remnant/isolated forest ecosys-
tem, such as riparian forests, from surrounding contiguous forest types. The ability to
discriminate the biomass and structure of riparian zones from non-riparian zones has
significant implications for examining the impact of fragmentation and land-use change
on the structural and biomass dynamics of remnant ecosystems, such as riparian forests.
Forest fragmentation may lead to elevated tree mortality and micro-climatic changes at the
edges, which, in turn, can lead to changes in structure, biomass stocks, and carbon fluxes
in the forest fragments (Nascimento and Laurance 2004).

5. Conclusion

This study presented the use the Fourier Transform Ordination (FOTO) method to
determine above-ground biomass and canopy structure of various Malaysian land-cover
types. The generation of texture maps of these forest landscapes based on the analysis of
high-resolution satellite data by the FOTO method, in conjunction with ground data
collection and experiments such as those of the SAFE project, provided some valuable
insight on the biomass of each forest. This information may provide the foundation for
changing logging patterns and human activity in these valued forest landscapes, thereby
reducing forest degradation and increasing ecological recovery. It is noted, however, that
the FOTO-derived biomass estimate models are ultimately based on field AGB values.
Inaccuracies and uncertainties perpetuated in the allometric equations may influence the
texture-based AGB estimates. Furthermore, the predictive ability of the FOTO algorithm
may be influenced by the degree of disturbance and fragmentation of a given forest type.

Compared with methods based on spectral characteristics, texture-based methods have
the potential to sidestep the problems of saturation that result in the prediction of relatively
higher biomass values. Texture-based methods, including FOTO, along with the use of
satellite and field data, may also serve other purposes and offer help to more tropical
forest countries and areas to more effectively monitor their forest cover and track the
ongoing evolution and changes in the forest and related biomass.
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