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Section 1.​ Scaling individual dendrometer measurements to the plot level 
Tree height allometries were calculated for each site using the following equations.  
(SM Eq. 1) Height = β​0​ + β​1​*DBH 
(SM Eq. 2) Height = β​0​ + β​1​*log(DBH) 
(SM Eq. 3) Height = β​0​*[(1/wd)^β​1​]*DBH^2 
The model fit was compared by AIC, where the non-linear fit (SM Eq.3) was consistently the best fit. Then 
the predicted tree height, the wood density, and its diameter were used with equation 4 from Chave et 
al., (2016) to estimate the aboveground biomass. This was converted into carbon content with a dry 
biomass ratio of 47.8% for each tree. 
 
Section 2. ​Meteorological predictors 
We corroborated the accuracy of the TerraClimate product with downscaled monthly estimates produced 
by applying a machine learning regression technique to predict 3-hourly meteorological values from 
automatic weather stations located at or near the GEM sites used in this study. The actual meteorological 
observations from the weather stations were generally too short in time period (2 - 10 years of operation 
at each site). We could not use raw weather station observations for the NPP​stem​ statistical model fitting 
because of data gaps, owing to power failures and/or sensor failures in the weather stations. 
ERA-Interim is a well established climate reanalysis product, however owing to the coarse 0.25 degree 
spatial resolution, the raw outputs do not well capture the micrometeorological environment of a forest 
plot. Thus a downscaling method was needed to align the ERA-Interim meteorological estimates to that 
of the local environments surrounding the forests plots.  
 
However, while this downscaling method can gapfill and extend weather station records - it cannot fix 
intrinsic sensor errors or biases. For example, we believe the downscaled predictions for VPDmean from 
Ankasa (ANK) are flawed due to unrealistically high relative humidity values from the weather station 
sensor. The mismatch between the downscaled VPDmean estimates from the Malaysian Borneo and the 
TerraClimate estimates are likely caused by the downscaling method applied to the Maliau (MLA) and 
Danum (DAN) sites. Further, the SAFE weather station (SAF) is from an eddy flux tower that is only 
kilometers away from vast palm oil plantations. This transition in humidity may not be well 
characterized by the TerraClimate product, but we can not be sure at this time if the downscaling process 
was flawed by weather sensor errors or problems intrinsic to the ERA-Interim driver variables. The 
TerraClimate Tmean estimates are also meant to correspond to 2-meter high standard weather stations, 
whereas the SAFE eddy flux tower is well above the canopy, where the VPD will be higher.  
 
We used a stochastic gradient boosting algorithm to predict each meteorological variable using the 
surface level diagnostic variables from the ERA-Interim climate reanalysis product as predictors. This 
enabled the site-level meteorological record to be extrapolated through time (and gap-filled where 
necessary) with considerably more accuracy than using the raw ERA-Interim estimates for temperature 
and vapour pressure deficit. ERA-Interim was chosen over other climate reanalysis products because it 
was found to be the most accurate of gridded climate products over tropical forest regions ​(Burton et al., 
in press​)​. However we could not use ERA-Interim for surface level downwelling shortwave radiation due 
to a known error in the reanalysis model diagnostic writing process. Instead we used the MERRA2 
climate reanalysis product ​[48], and the remote sensing based surface level shortwave estimates from the 
CERES EBAF product ​to examine monthly mean shortwave radiation. The mean monthly cloud fraction 
was also calculated from the long-term PATMOS-X product to corroborate the other estimates of 
shortwave radiation. 
 
 



Precipitation related metrics at the plot level were derived from the CHIRPS v2.0 satellite rainfall product 
[49]​ sampled at 0.05° spatial resolution. Climatic water deficit (CWD) and a 12-month running maximum 
climatic water deficit (MCWD) were calculated as follows ​[29]​:  
(SM Eq. 4): inCWDt = m (CWD ET , 0)t−1 + Precipt +  t   
(SM Eq. 5): inMCWDt = m (CWD … CWD )t t−12  
Precip​t​ and ET​t​ are the precipitation and evapotranspiration of the month ​t​. Monthly evapotranspiration 
estimates (ET​t​) were derived by taking the 2002-2014 spatially varying monthly means from the 
MOD16A2c005 Net Evapotranspiration product ​[50]​ (SM Fig 1). Hence CWD provides an estimate of 
water stress, without accounting for local soil and water retention properties, which are often poorly 
described in the tropics and hence difficult to scale. We also use a simple metric to characterize the 
wet-dry seasons transitions (WDT) that is calculated as:  
(SM Eq. 6): Precip eanWDT t =  t − m (Precip , )t−1 Precipt−2  
Despite its simplicity the WDT metric largely captures the arrival of the wet season (positive WDT) and 
the transition to the dry season (negative WDT).  
 
Section 3. Pantropical predictions of NPP​stem 
Predictions were limited to 0.5° grid cells with at least 50 km​2​ of forest cover (in 2016) using the Global 
Forest Cover product v1.4. 
The CERES record of shortwave radiation begins in 2000. We applied a linear correction factor to the 
TerraClimate estimates of to better match the moving 3-month anomalies of shortwave radiation from the 
CERES estimate. The scaled TerraClimate shortwave anomaly estimates were then used to gapfill the 
CERES shortwave anomaly estimates when producing the NPP​stem​ predictions for the aseasonal wet 
tropical forest regions (S < 0.05). These aseasonal wet tropical regions, where the aseasonal wet forest was 
was applied  are shown in SM Fig. 9. The range of mean annual precipitation, and temperature range 
from the GEM sites broadly covered most of the tropical forest regions (SM Fig. 9). 
 
   



Supplementary Tables 
 
SM Table 1. R2 with and without random effects (RE) are 
presented for the meteorological effects for the aseasonal wet 
forest data. 

Seasonal Forest Model Terms  R2  R2 (no RE) 

Intercept only  0.14  0 

     

u_Tmean  0.17  0.03 

u_Tmean + Tmean_anom  0.17  0.03 

u_Tmean + Tmean_anom_3mo  0.17  0.03 

     

u_VPDmean  0.35  0.19 

u_VPDmean + VPDmean_anom  0.36  0.19 

u_VPDmean + VPDmean_anom_3mo  0.35  0.19 

     

u_SW  0.19  0.06 

u_SW + SW_anom  0.21  0.08 

u_SW + SW_anom_3mo  0.23  0.11 

     

u_SW.ceres  0.13  0 

u_SW.ceres + SW_anom.ceres  0.15  0.02 

u_SW.ceres + SW_anom_3mo.ceres  0.24  0.06 

     

u_cloud_fraction  0.36  0.2 

u_cloud_fraction + cloud_fraction_anom  0.36  0.21 

     

u_CWD  0.29  0.16 

u_CWD + CWD_anom  0.29  0.17 

     

u_MCWD  0.18  0.21 

u_MCWD + MCWD_anom  0.18  0.2 

     

u_water_deficit  0.43  0.27 

u_water_deficit + deficit_anom  0.44  0.28 

u_water_deficit + deficit_anom_12mo  0.43  0.28 

     



u_VPDmean + u_Tmean + u_SW + 
dry_anom_sigma + wet_anom_sigma + 
spline(sw_anom_sigma_3mo)  0.52  0.35 

 
 
SM Table 2. R2 with and without random effects (RE) are presented for the 
meteorological effects for the aseasonal wet forest data. 

Aseasonal Wet Forest Model Terms  R2  R2 no RE 

Intercept only  0.18  0 

     

u_Tmean  0.19  0.01 

u_Tmean + Tmean_anom  0.25  0.07 

u_Tmean + Tmean_anom_3mo  0.24  0.06 

     

u_VPDmean  0.2  0.01 

u_VPDmean + VPDmean_anom  0.35  0.14 

u_VPDmean + VPDmean_anom_3mo  0.4  0.18 

     

u_SW  0.21  0.02 

u_SW + SW_anom  0.22  0.04 

u_SW + SW_anom_3mo  0.29  0.11 

     

u_SW.ceres  0.21  0.02 

u_SW.ceres + SW_anom.ceres  0.21  0.03 

u_SW.ceres + SW_anom_3mo.ceres  0.24  0.06 

     

u_cloud_fraction  0.22  0.4 

u_cloud_fraction + cloud_fraction_anom  0.24  0.06 

     

u_CWD  0.214  0.024 

u_CWD + CWD_anom  0.22  0.036 

     

u_MCWD  0.21  0.02 

u_MCWD + MCWD_anom  0.25  0.06 

     

u_water_deficit  0.21  0.02 

u_water_deficit + deficit_anom  0.27  0.07 

u_water_deficit + deficit_anom_12mo  0.26  0.06 



     

VPDmean_anom_sigma_3mo + def_anom_sigma 
+ sw_anom_sigma_3mo.ceres  0.41  0.2 

   



 
Supplementary Figures 
 

 
SM Figure 1. ​ The 30 year median with 90% quantile of monthly rainfall. ET is the 14 
year average from the MODIS MOD16A2.005 evapotranspiration product.   



 

 
SM Figure 2. ​ Site level downscaled monthly estimate of mean temperature (Tmean) 
(black) are compared with TerraClimate (blue).   



 
SM Figure 3. ​ Site level downscaled monthly estimate of mean vapor pressure deficit 
(VPDmean) (black) are compared with TerraClimate (blue). 



 
SM Figure 4. ​ The Pearson correlation coefficient is presented for the meteorological 
variables tested and or retained in the final seasonal and aseasonal wet forest models.  
  
 



 
SM Figure 5. ​ The R ​2​ (excluding random effects) explained by the two statistical models 
plotted against precipitation seasonality, where a higher value indicates that rainfall is 
concentrated into a shorter season.   



 
SM Figure 6. ​ The long-term monthly mean of VPD (VPDmean​μ​) (black line) with the 
shaded regions representing the range of VPDmean at 1 and 2 standard deviations from 
VPDmean ​μ​.   



 
SM Figure 7. ​ Relative stomatal conductance using the Medlyn approximation (Medlyn 
et al., 2011) is plotted against the mean monthly range of vapor pressure deficit [kPa]. 
The dotted lines represent one and two units of standard deviations beyond (anomalies 
from the monthly mean conditions in the context of this study) the mean monthly 
ranges.  
   



 
SM Figure 8. ​ The Pantropical forest region moving 12-month mean of the air 
temperature (Tmean) and vapour pressure deficit (VPDmean). Data source is 
TerraClimate. 
 
   



 
SM Figure 9. Areas where precipitation seasonality is greater and or less than 0.05 are 
shown. The Aseasonal areas with S < 0.05 highlighted here show where the aseasonal 
wet forest model was applied. The seasonal forest model was applied to all other 
regions. 


