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ABSTRACT

Aim Our aim was to evaluate the extent to which we can predict and map tree

alpha diversity across broad spatial scales either by using climate and remote

sensing data or by exploiting spatial autocorrelation patterns.

Location Tropical rain forest, West Africa and Atlantic Central Africa.

Methods Alpha diversity estimates were compiled for trees with diameter at

breast height ‡ 10 cm in 573 inventory plots. Linear regression (ordinary least

squares, OLS) and random forest (RF) statistical techniques were used to project

alpha diversity estimates at unsampled locations using climate data and remote

sensing data [Moderate Resolution Imaging Spectroradiometer (MODIS),

normalized difference vegetation index (NDVI), Quick Scatterometer

(QSCAT), tree cover, elevation]. The prediction reliabilities of OLS and RF

models were evaluated using a novel approach and compared to that of a kriging

model based on geographic location alone.

Results The predictive power of the kriging model was comparable to that of

OLS and RF models based on climatic and remote sensing data. The three models

provided congruent predictions of alpha diversity in well-sampled areas but not

in poorly inventoried locations. The reliability of the predictions of all three

models declined markedly with distance from points with inventory data,

becoming very low at distances > 50 km. According to inventory data, Atlantic

Central African forests display a higher mean alpha diversity than do West

African forests.

Main conclusions The lower tree alpha diversity in West Africa than in Atlantic

Central Africa may reflect a richer regional species pool in the latter. Our results

emphasize and illustrate the need to test model predictions in a spatially explicit

manner. Good OLS or RF model predictions from inventory data at short

distance largely result from the strong spatial autocorrelation displayed by both

the alpha diversity and the predictive variables rather than necessarily from causal

relationships. Our results suggest that alpha diversity is driven by history rather
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Scientifiques en Côte d’Ivoire, Abidjan, Côte
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INTRODUCTION

Rain forests are species-rich ecosystems providing multiple

services to humanity (Myers, 1997). In the last century, many

tropical forest areas have been heavily exploited or cleared and

converted to other land uses, leading to their fragmentation

and alteration (Laurance et al., 1999). The consequences of

these changes include biodiversity loss and increasing atmo-

spheric carbon dioxide concentrations, resulting in climate

change, due to the conversion of high-carbon storage forest to

low-carbon storage agriculture (Lewis, 2006). Despite the

importance of rain forests for terrestrial biodiversity, the causes

of the diversity gradients within and between the world’s main

rain forest areas remain poorly understood (Givnish, 1999;

Parmentier et al., 2007). In addition, large areas of rain forests

are unexplored by scientists, giving a fragmentary view of

spatial patterns of diversity, even for well-studied organisms

such as plants (Burgess et al., 2005).

A potential way to compensate for the lack of inventory data

is through modelling using georeferenced variables and

determining their relationship with plant diversity (Ferrier

et al., 2004; Jarnevich et al., 2006). Two main categories of

models have been proposed: theoretical models and experi-

mental models. Theoretical models are based on extrapolations

of ecologically meaningful relationships between plants and

environments, mainly water–energy dynamics (O’Brien, 2006),

and provide coarse-scale diversity estimates. Experimental

models are built upon the correlations of diversity datasets

with a set of potentially predictive variables without a priori

assuming the causal relationships. Experimental models can

provide estimates at a local scale, in addition to the coarse scale

of theoretical models. Two main types of variables appear to be

correlated with plant diversity, and have been used in

experimental modelling: (1) environmental variables that

could potentially have a causal effect on plant diversity, and

(2) variables that directly describe properties of the vegetation.

Examples of environmental variables include those related to

climate, topography and soil fertility (e.g. Currie & Paquin,

1987, in North America; ter Steege et al., 2003, and Clinebell

et al., 1995, in Amazonia; Bongers et al., 1999, and Field et al.,

2005, in Africa; Slik et al., 2009, in Borneo). Examples of

variables describing the vegetation itself include tree turnover

(Phillips et al., 1994, in Amazonia), stem density (ter Steege

et al., 2003, in Amazonia), remote sensing variables related to

photosynthetic activity (normalized difference vegetation

index, NDVI: Schmidt et al., 2008, in Burkina Faso; leaf area

index: Saatchi et al., 2008, in Amazonia) and forest canopy

roughness and moisture [Quick Scatterometer (QSCAT)

microwave data: Saatchi et al., 2008, in Amazonia]. Modelling

a quantitative variable using explanatory variables has often

been performed using linear models such as ordinary least

squares (OLS) regressions. Other modelling approaches have

also been developed that might better capture complex

relationships among variables than models constrained by

linear relationships. Among them, random forest models have

been shown to perform particularly well for ecological

predictions (Prasad et al., 2006). Note that the word ‘forest’

relates to a collection of regression ‘trees’, whatever the

variable studied. However, these new methods have not yet

been evaluated for their ability to predict biodiversity patterns.

The reliability of various diversity modelling approaches has

to be critically evaluated for different areas. Patterns and

implied relationships can differ markedly within and among

regions (e.g. see Parmentier et al., 2007, for inconsistent

correlations of tree alpha diversity with climatic variables

between Africa and Amazonia). It is also unclear whether such

correlations result from causal relationships (direct or indirect),

as the mechanisms that could explain these relationships are

than by the contemporary environment. Given the low predictive power of

models, we call for a major effort to broaden the geographical extent and intensity

of forest assessments to expand our knowledge of African rain forest diversity.
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still poorly understood and remain the subject of debate

(Wright, 2002). Predictive models are generally based on

contemporary factors, while historical factors could also explain

at least part of the modern diversity gradients (McGlone, 1996).

An additional problem arises due to the fact that both species

richness and many of the variables used to predict richness are

spatially autocorrelated (the similarity between samples for a

given variable decreases with the spatial distance separating

those samples; Legendre, 1993). When both the variable to be

modelled and the predictor variables are spatially autocorrelat-

ed, classical methods to measure the association between these

variables (i.e. regression, correlation, ANOVA) give false

confidence because they tend to reject too often the null

hypothesis that there is no association between these variables

(Lennon, 2000; Diniz et al., 2003; Bahn & McGill, 2007).

Here we focus on African tropical rain forests. The

protection of African rain forests presents enormous challenges

because most African forested countries have low incomes,

weak conservation policies, inadequately developed institu-

tions, growing populations and rising prices of food and

energy (Balmford et al., 2001; de Wasseige et al., 2009).

Moreover, the identification of areas most in need of

protection is difficult because comparatively little is known

about vast sections of these areas (Küper et al., 2006). Burgess

et al. (2005) presented a map of the plant species richness

across sub-Saharan Africa at a 1� · 1� resolution for a dataset

of 5958 plant species, using collection records from taxonomic

revisions, distribution maps and herbarium specimen labels.

However, as the collection intensity is very unequal across the

domain, robust interpretation of the patterns documented is

difficult. Using a similar dataset, Küper et al. (2006) modelled

the individual species distributions at the same resolution and

summed the individual species maps to obtain species diversity

estimates, comparing them with field-measured diversity

patterns. For several of the areas with very few collection

records, such as the north-western Congolian lowland forests,

their model predicted much higher species richness than

currently documented. Another approach to estimate diversity

measures is to focus on species inventories in standardized

units of the rain forest. With such direct estimates of alpha

diversity (local diversity) one can test the reliability of

predictive models. In this study we compiled tree alpha

diversity data using 573 inventory plots across West and

Atlantic Central Africa. We also compiled data for 18 climatic

and remote sensing variables for 1 km grid squares across the

study domain. Our aim was to evaluate if we could map tree

alpha diversity of African rain forests using inventory, climate

and satellite-derived data combined with two distinct model-

ling approaches: a classical linear model using ordinary least

squares (OLS) regression and a nonlinear multiple regression

using random forest (RF). Specifically, we aimed to answer the

following questions.

1. Using inventory data, what are the geographic patterns of

tree alpha diversity?

2. What is the spatial dependency of tree alpha diversity in

comparison to that of climatic and remote sensing data?

3. Using climatic and remote sensing data, do the OLS and RF

models provide consistent geographic patterns of tree alpha

diversity and congruent relationships with explanatory

variables?

4. How do the OLS and RF models compare with a two-

dimensional kriging based on the geographical coordinates

only?

5. What is the reliability of model projections outside areas

with inventory data?

MATERIALS AND METHODS

Data

Tree alpha diversity data

Data for trees with diameter at breast height (d.b.h.) ‡ 10 cm

were compiled from the literature and unpublished data. The

dataset comprises 573 plots and transects sections. We

restricted our analysis to terra firme (upland, non-periodi-

cally flooded) plots in lowland (elevation < 900 m) old-

growth forests. Alpha diversity is defined in this case as the

local diversity in the community of trees with d.b.h. ‡ 10 cm.

This stratum of the forest was chosen because it is a major

component of the rain forest structure, and because data are

available for a large number of plots. The plots and transects

included in this study vary in shape, area and number of

trees. Robust and meaningful comparisons of tree alpha

diversity can be calculated from such a dataset provided that

the diversity indices are correctly chosen (Condit et al.,

1998). To limit artificially increased alpha diversity due to

species turnover between different forest types, a maximal

plot or transect dimension of 500 m was used. The minimum

number of trees with d.b.h. ‡ 10 cm was set to 50. The mean

number of trees per plot was 145 (SD = 159, range = 50–

684) and the mean plot size was 0.3 ha (SD = 0.35,

range = 0.0375–1). As our dataset was unequally distributed

within the African rain forest region (Fig. 1a), we had

insufficient data points to include the extensive forests of the

Democratic Republic of Congo in the analysis, and we

restricted our study area to West Africa and Atlantic Central

Africa (Upper Guinean and Lower Guinean phytogeograph-

ical regions according to White, 1979). Plot coordinates, plot

size and alpha diversity values are provided in Appendix S1

in the Supporting Information.

Two measures of alpha diversity were used in this study:

Fisher’s alpha and S(50). Fisher’s alpha is a parametric index

assuming that species abundances follow a log series

distribution. It is defined implicitly by the formula

S = a*ln(1 + n/a), where S is number of taxa, n is number

of individuals, and a is Fisher’s alpha (Fisher et al., 1943).

S(50) is a nonparametric sample-size unbiased estimator of

alpha diversity: the expected number of species found in a

subsample of size 50. It was computed following Hurlbert

(1971) using the program BiodivR 1.1 (Hardy, 2009a).

According to simulations (O.J. Hardy, unpublished data),
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Fisher’s alpha is more sensitive to variations in plot shape,

area and number of trees than S(50). Nevertheless, with

geographic patterns of variation being very similar for both

diversity measures and as Fisher’s alpha has been more

widely used in the literature, we present results for Fisher’s

alpha in the main text and results for S(50) in Appendi-

ces S2 and S3.

The quality of the botanical data was generally good, but not

directly comparable between datasets because inventories were

recorded by a large number of botanical teams. The number of

individuals that will be identified or attributed to a species is

dependent upon the experience of the botanist who made the

inventory, as well as on the time spent on taxonomic analysis

and the degree of specimen vouchering.

Climate data

A series of 1 km-scale bioclimatic metrics were obtained from

WorldClim (WorldClim version 1.4; Hijmans et al., 2005).

These metrics are derived from monthly temperature and

rainfall climatologies (1950–2000). They include 11 tempera-

ture and eight precipitation metrics, expressing spatial varia-

tions in annual means, seasonality (e.g. annual range in

temperature and precipitation) and extreme or limiting

climatic factors. The WorldClim monthly climatologies were

developed using long-time series of a global network of weather

stations. The station data were interpolated to monthly climate

surfaces at 1 km spatial resolution by using a thin-plate

smoothing spline algorithm with latitude, longitude and

elevation as independent variables (Hijmans et al., 2005).

The accuracy of the data is mainly dependent upon the density

of weather stations and on the quality of the interpolation.

We tested for covariance among the original 19 bioclimatic

metrics by using 1000 random points across West Africa and

Atlantic Central Africa. For metric pairs showing high

correlation (Pearson’s correlations in the order of 0.9 or

larger), we retained the metric most commonly used in

distribution modelling. The final bioclimatic subset used for

this study included nine bioclimatic variables; annual mean

temperature (Bio1), mean diurnal temperature range (Bio2),

temperature seasonality (Bio4), maximum temperature of the

warmest month (Bio5), minimum temperature of the coldest

month (Bio6), annual mean rainfall (Bio12), rainfall season-

ality (Bio15), rainfall of the wettest quarter (Bio16) and rainfall

of the driest quarter (Bio17).

Remote sensing data

We used both optical passive and microwave active sensors

layers. The optical data used in this study stem from the

Moderate Resolution Imaging Spectroradiometer (MODIS)

sensors and include the normalized difference vegetation index

(NDVI), a measure of vegetation greenness, and the vegetation

continuous field product of the Global Land Cover Facility

Figure 1 Inventory data maps for the alpha

diversity of trees in the rain forest of West

Africa and Atlantic Central Africa for 0.8�
grid cells. (a) The number of plots included

in each grid cell. (b) Mean of the Fisher’s

alpha values of the plots included in each grid

cell.
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(GLCF) as a measure of the percentage of tree cover (TREE)

(Hansen et al., 2003). For this study, monthly NDVI as well as

annual tree cover data from the year 2001 were compiled over

our study region at the original 1 km MODIS resolution.

Based on the monthly NDVI data, several metrics were

generated (avoiding contaminated data, most often due to

cloud cover) to capture temporal and spatial characteristics of

vegetation: (1) NDVI max: maximum based on 12 months,

and (2) NDVI green: greenest (maximum NDVI) quarter

based on four seasons (DJF, MAM, JJA and SON). Radar

backscatter measurements are sensitive to surface canopy

roughness, surface canopy moisture, and other seasonal

attributes, such as the deciduousness of vegetation (Imhoff,

1995). For this study, we included the microwave QuickSCAT

(QSCAT), at wavelengths of c. 2 cm (Ku-band), available in

3-day composites at 2.25 km resolution. The 3-day data of the

year 2001 with horizontal polarization and complete data

coverage were used to create average monthly composites and

then further processed to produce two metrics that included

annual mean (QSCAT mean) and standard deviation of radar

backscatter over the 12 months (QSCAT std). In a final step,

the QSCAT metrics were re-aggregated to the 1 km spatial

resolution of the optical data (each 1 km pixel was given the

value of the 2.25 km pixel covering it). We also included data

from the Japanese Earth Resource Satellite (JERS-1), a radar

sensor with a wavelength of 23 cm. These longer wavelength

data are more strongly related to biomass than the QSCAT

layers, but are also influenced by aspects of vegetation

structure. We used the mosaic produced from 1996 data at a

100 m resolution by the Global Rain Forest Mapping Project

(GRFM; Rosenqvist et al., 2000), which we resampled to the

MODIS 1 km grid. We obtained digital elevation data from the

Shuttle Radar Topography Mission (SRTM). These data were

aggregated from the native SRTM 90 m resolution to 1 km to

match the target resolution of our study. In addition to mean

elevation (SRTM mean), we also included the standard

deviation within each 1 km2 pixel (SRTM std) based on the

90 m data as an indicator of surface ruggedness.

Spatial dependency of the variables

The spatial autocorrelation of quantitative variables is

described using Moran’s I statistic. The latter expresses the

correlation of the values of a given variable, defined for a set of

locations, between pairs of locations situated at given physical

distances apart. It is computed for each distance class d as

(Sokal & Oden, 1978):

IðdÞ ¼
Xn

i

Xn

j

wijðdÞ:ðxi � �xÞ:ðxj � �xÞ=VarðxÞ
Xn

i

Xn

j

wijðdÞ

where xi is the value of variable x for sample i; �x and Var(x)

are, respectively, the mean and variance of variable x estimated

from the whole data set; n is the total sample size and wij(d) are

weights equalling one if the distance between samples i and j is

included in class d, and zero otherwise. Values of Moran’s I

plotted against d produce a correlogram, that is the function

I(d). When a variable is spatially autocorrelated, I(d) is

expected to be positive at short distances, decreasing with

increasing distances and eventually reaching negative values.

Without spatial autocorrelation, the correlogram is horizontal,

except for local fluctuations due to limited sample size. The

spatial autocorrelation was tested by randomizing the values of

the variable among all samples. Analyses were run with

Torocor 1.0 (Hardy, 2009b).

Ecological modelling

The relationships between alpha diversity and the climatic and

remote sensing variables described above were modelled using

two different methods: an ordinary least squares (OLS)

multiple regression and random forest (RF) developed by

Breiman (2001). Modelling was performed in R 2.1.8 (http://

www.r-project.org/). The OLS model was run with the log-

likelihood maximized option. To apply the RF model we used

the package randomForest v. 4.5–30 in the R statistical

framework (Liaw & Wiener, 2002). The RF model is an

ensemble classifier, a statistical learning procedure based on

multiple decision trees used to predict a response variable

(here local diversity) according to explanatory variables (here

climate and remote sensing variables). A random subset of

both the predictor variables and the data records themselves

(here the 573 sample plots) are used for training of each

decision tree. That tree statement is then tested on the

remaining records (in RF procedures, each record is excluded

from the training set in c. 36% of the runs; Liaw & Wiener,

2002), and the collection of these tests results in an overall

statement of random forest performance. This algorithm

modelling technique has proved to be very powerful in

previous applications, for instance in predictive vegetation

mapping under current and future climate, using climate, soil,

land use, landscape and topography as explanatory variables

(e.g. Prasad et al., 2006). It has the advantage over OLS

regression in that there is no assumption on the type of

relationships (e.g. linear relationship) between response and

explanatory variables, so it can handle very complex relation-

ships involving interaction and nonlinearity across a response

variable. Two estimations of variable importance provided by

the RF model were used in this study (Kuhn et al., 2008): (1)

mean decrease accuracy (MDA) based on mean square error,

and (2) mean decrease Gini (MDG) based on decision tree

node purity. We limited the extent of the model predictions to

roughly the rain forest limits defined by Mayaux et al. (2004)

in order to mask out savannas and to avoid predicting tree

diversity where we estimate there is no forest. We also

predicted tree alpha diversity with a two dimensional kriging

based on the latitude and longitude using the Krig function in

the R package ‘field’ 6.3 (Fields Development Team, 2006)

with default parameters. Kriging is an interpolation technique

that fits a surface to irregularly spaced data and accounts for

spatial autocorrelation. Here it estimates the alpha diversity at

a location as a weighted average over data points where weights

I. Parmentier et al.
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decrease with the distance to the focal location. The kriging

model assumes that the unknown function is a realization of a

Gaussian random spatial process. It optimizes the parameters

of the general equation Y = P(x) + Z(X) + e, where Y is the

vector of tree alpha diversity, P(x) is a first order trend surface,

Z(X) is a mean zero, Gaussian stochastic process with a

covariance structure across space modelled as an exponential

function of distance, and e is a residual error term. Hence, the

kriging model takes into account a possible linear gradient of

diversity through space [P(x) term] and the spatial autocor-

relation of diversity [Z(X) term].

Validation of the model prediction according

to the distance to inventory data

We designed and implemented a novel approach to assess the

quality of the predictions according to their distance to

available inventory data. The principle is based on evaluating

model predictions by defining the training dataset in a spatially

explicit way. For each of the 573 data points considered in

sequence (focal point), we excluded this focal point from the

training dataset, as well as all other surrounding data points

within a defined radius (Fig. 2). We ran the model and

recorded the value estimated for that focal point. Once

estimations were obtained for all 573 data points, the squared

Pearson’s correlation coefficient (pseudo-R2) between esti-

mated and real values was calculated. Computations were

performed in R using OLS, RF or kriging models for the

exclusion radii 0, 0.01�, 0.02�, 0.05�, 0.1�, 0.2�, 0.3�, 0.4�, 0.5�,

1�, 2�, 5� and 10�, corresponding to c. 0, 1.1, 2.2, 5.6, 11, 22,

33, 45, 56, 111, 222, 557 and 1113 km, respectively.

RESULTS

Diversity patterns: inventory data

The highest alpha diversity values are located in Atlantic Central

Africa [see Fig. 1b and Fig. S1 in Appendix S2, which present

Figure 2 Method for evaluating the power of a model in a spa-

tially explicit way. The goal is to assess the predictive power of a

model trained on available inventory data points according to the

distance to data points. A focal data point (black dot) is sup-

pressed from the training dataset as well as all other data points

(open circles) that are within a defined radius (R1 or R2) of that

focal point. In the example shown, when radius = 0, only the focal

point is suppressed while one or 12 additional points are also

suppressed when the radius = R1 or R2, respectively. The tested

model is then used to estimate the value of the focal point using

the remaining data points. The procedure is repeated, with each

data point sequentially becoming the focal point and excluding

surrounding points. The pseudo-R2 of the regression of estimated

values on real values characterizes the predictive power of the

model at a given minimal distance from existing data points. If

pseudo-R2 quickly decreases as the exclusion radius increases, it

means that the model can provide reliable predictions in the

vicinity of existing data points but not at large distances.

Figure 3 Boxplots of Fisher’s alpha values for trees with diameter

at breast height ‡ 10 cm in 573 inventory plots in the rain forests

of West Africa (WA) and Atlantic Central Africa (ACA), in all

plots (a) and for 0.4� grid cells (b).

Figure 4 Spatial autocorrelograms [I(d) = Moran’s I as a

function of distance] for Fisher’s alpha values of trees with

diameter at breast height ‡ 10 cm in 573 inventory plots in the

rain forests of West Africa and Atlantic Central Africa, for the

climatic and the remote sensing variables (mean values)

corresponding to the plot locations, and for the residuals of

ordinary least squares (OLS) and random forest (RF) models

used for predicting Fisher’s alpha from this dataset.

Modelling tree alpha diversity of African rain forests
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mean values for 0.8� grid cells, and Fig. S2b in Appendix S2 for

higher resolution maps with 0.4� grid cells, as well as Fig. 3 for a

comparison of the median of the Fisher’s alpha values for all

plots (a) and for 0.4� grid cells (b)]. Mean Fisher’s alpha values

are significantly higher in Atlantic Central Africa (ACA;

mean = 32.1 ± 0.7 SD, n = 428) than in West Africa (WA;

mean = 23.4 ± 1.2 SD, n = 145) according to the Mann–

Whitney U-test (P < 0.001) and remain significant using mean

estimates per grid cell at 0.4� resolution (ACA:

mean = 33.4 ± 1.4 SD, n = 40; WA: mean = 23.3 ± 1.9 SD,

n = 21, only grid cells containing at least three plots or transects

were considered). Similar results were obtained for the S(50)

diversity measure (see Figs S1b, S2c and S3 in Appendix S2).

The lack of inventory data is illustrated by the fact that no

estimate was available for 65% and 84% of rain forest grid cells

at 0.8� and 0.4� resolution, respectively. There are no obvious

east–west or north–south geographic gradients within either

forest block. Highest diversity values (for 0.4� pixels with mean

Fisher’s alpha > 40 and including at least three plots) are

observed in Cameroon in the Campo Ma’an National Park and

in Gabon in the Bélinga Mountain range, the Massif du

Chaillu, and a region stretching from the Monts de Cristal to

the Waka National Park.

Spatial dependency of alpha diversity and predictive

variables

Fisher’s alpha is strongly spatially autocorrelated (Fig. 4).

Moran’s I statistic computed for different distance intervals,

I(d), is very high (close to unity) at short distances and

Figure 5 Model predictions of Fisher’s

alpha values for trees with diameter at breast

height ‡ 10 cm in 573 inventory plots in the

rain forests of West Africa and Atlantic

Central Africa with three different models:

(a) random forest (RF) model, (b) ordinary

least squares (OLS) model, (c) kriging model.
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decreases fairly linearly with the log of the distance up to

c. 400 km, beyond which it levels out. Similar spatial

dependency is observed for the 18 climatic and remote sensing

variables included in the models [I(d) values between 0.5 and 1

at short distance, see Fig. 4 and Table S1 in Appendix S3].

Model predictions

The Spearman correlations between Fisher’s alpha, S(50), the

remote sensing variables and the climatic variables in the

inventory data are presented in Table S2 in Appendix S3.

Fisher’s alpha values correlate best with rainfall seasonality

(Spearman’s rs = 0.36), mean NDVI (rs = )0.33) and rainfall

in the wettest quarter (rs = 0.31). Diversity maps obtained from

the predictions of the three models (OLS, RF and kriging) are

presented in Fig. 5. These patterns are generally consistent

between the three models in areas where inventory data are

available, but they differ considerably in areas lacking inventory

data (e.g. in Sierra Leone, south-eastern Liberia, southern

Nigeria, southern Congo; see Fig. S5 in Appendix S2). The OLS

and RF models agree on two of the three most important

variables (Table 1). According to the t-statistics of the OLS

model, the most important variables are elevation (t = 5.6),

mean annual temperature (t = 4.8), and QSCAT mean

(t = 3.5). In the RF model, according to the mean decrease

Table 1 Importance of climatic and remote sensing variables for predicting tree alpha diversity in the rain forests of Atlantic Central Africa

and West Africa using a linear model (ordinary least squares, OLS) and the random forest (RF) model. A higher percentage of mean decrease

accuracy (% MDA) or mean decrease Gini (MDG) represents higher variable importance in the RF model. A higher absolute t-value

represents a higher variable importance in the OLS model.

Variable OLS coefficient

OLS RF RF OLS RF rank RF rank

t-value % MDA MDG rank % MDA MDG

elevation 0.046 5.594 31 8803 1 3 3

bio1 1.715 4.817 20 4387 2 13 12

QSCAT mean 0.059 3.542 31 7979 3 2 4

bio5 )0.755 )3.013 26 6059 4 7 9

NDVI green 0.002 2.098 20 4218 5 12 14

NDVI mean )0.002 )1.897 17 6569 6 15 6

bio6 )0.359 )1.477 24 4001 7 9 16

bio15 0.341 1.401 33 12281 8 1 1

QSCAT std 0.114 1.018 21 4136 9 11 15

NDVI max )0.001 )0.895 16 4462 10 17 11

JERS 0.007 0.709 16 3808 11 18 17

bio2 )0.150 )0.580 24 4238 12 8 13

bio12 0.006 0.572 22 6382 13 10 8

bio4 0.003 0.482 28 6529 14 5 7

bio17 )0.004 )0.267 30 6579 15 4 5

bio16 )0.006 )0.254 26 9496 16 6 2

TREE )0.005 )0.156 16 3781 17 16 18

elevation std )0.001 )0.015 17 4879 18 14 10

bio1, annual mean temperature; bio2, mean diurnal temperature range; bio4, temperature seasonality; bio5, maximum temperature of the warmest

month; bio6, minimum temperature of the coldest month; bio12, annual mean rainfall; bio15, rainfall seasonality; bio16, rainfall of the wettest

quarter; bio17, rainfall of the driest quarter; QSCAT, QuickSCAT microwavedata related to canopy roughness and humidity; NDVI, normalized

difference vegetation index; JERS, radar sensor related to biomass; TREE, percentage of tree cover.

Table 2 Predictive power of the models [ordinary least squares

(OLS) linear model, random forest (RF) model and spatial kriging

(KR)] assessed from the pseudo-R2 (%) of real versus estimated

Fisher’s alpha values according to the minimal distance from

points with inventory data. The number of plots represents the

mean size (± SD) of the dataset used for prediction, which

includes the whole dataset (573 plots in the rain forests of West

Africa and Atlantic Central Africa, trees with diameter at breast

height ‡ 10 cm) except for the focal plot as well as all plots within

the threshold distance (Fig. 2).

Distance

(�)

Distance

(km) No. plots R2 (OLS) R2 (RF) R2 (KR)

0 0 572 26 40 42

0.01 1.1 570 ± 4 19 25 29

0.02 2.2 569 ± 4 18 19 25

0.05 5.6 566 ± 6 17 17 23

0.1 11 564 ± 7 16 12 21

0.2 22 559 ± 12 15 8 15

0.3 33 555 ± 12 14 6 13

0.4 45 551 ± 14 12 7 12

0.5 56 546 ± 16 9 5 4

1 111 517 ± 30 7 6 2

2 222 466 ± 47 4 3 3

5 557 294 ± 118 1 0 1

10 1113 216 ± 123 3 0 5
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accuracy values, the most important variables are rainfall

seasonality (33%), QSCAT mean (31%) and elevation (31%).

The majority of the variance remains unaccounted for in

both the OLS and RF models: only 31% of variance is explained

in the OLS model and 40% for the RF model. Note that these

percentages may not be directly comparable, because whereas

they are based on the complete dataset for the OLS model, they

are based on iterations of sub-sampling used for testing and

training in the RF model. Residuals of the OLS model display

short-distance spatial autocorrelation (Fig. 4). Hence, the

climatic and remote sensing variables introduced in the OLS

model cannot completely explain the similarity in diversity

values of closely located points. In this respect, the RF model

seems to perform better as there is no positive (actually a slightly

negative) spatial autocorrelation at short distance (Fig. 4).

Validation of model predictions outside

of well-sampled areas

We assessed the quality of the predictions according to the

distance to available inventory data. The kriging spatial model,

based on geographical coordinates only, performs better in

these validations than the RF and OLS models constructed

with climate and remote sensing data (Table 2). The perfor-

mances of the three models decay very quickly when the

exclusion radius increases, even when only a few points are

excluded. For the RF and OLS models, the squared Pearson’s

correlation coefficient (pseudo-R2) between estimated and real

values drops to 18–19% with an exclusion radius of 2.2 km

(excluding, on average, three additional plots). Pseudo-R2

becomes < 10% as soon as all plots at < 22 km from the focal

plot were excluded for the RF model, a pseudo-R2 value > 10%

is retained until the exclusion radius exceeds 50 km. Note that

for an exclusion radius of 50 km, < 5% of the plots from the

training dataset are excluded. These results can explain why the

three models show congruent patterns in areas well covered in

the training dataset, but fail to do so in regions with no or few

data.

DISCUSSION

Diversity patterns

Our confidence in the predictive maps derived from the

modelling approaches decreases rapidly with distance from

sampled areas. Therefore, little can be inferred for large areas

across West and Atlantic Central Africa. Although alpha

diversity is highly variable even at a local scale, forest plots tend

to have decreasing similarity in tree alpha diversity values

when the spatial distance between these plots increases. At the

continental scale, tree alpha diversity patterns in the reliable

regions of our maps (< 50 km from points with inventory

data, approximately the areas covered by the pixels in Fig. 1a)

are similar to those for vascular plant species richness

(including herbs and shrubs) mapped by Linder (2001) and

Barthlott et al. (2007).

Tree alpha diversity in West Africa is, on average, lower

than in Atlantic Central Africa. This may be explained by a

smaller regional species pool adapted to wet and humid

conditions in West Africa (Fox & Srivastava, 2006). Most

high diversity areas identified in Atlantic Central Africa

correspond to hilly regions at medium elevation, which could

explain the positive correlation observed in our dataset

between alpha diversity and both the elevation and the

standard deviation of elevation. It must be noted that the

inventory plots used are not a random sample of the domain.

Most inventory plots are located in protected areas, which

biases the maps towards the diversity of mature and relatively

undisturbed forest vegetation. Moreover, many areas within

the African rain forest have now been deforested or degraded

(particularly in West Africa) and the maps for those areas are

mostly predicting potential or historical tree diversity rather

than actual diversity.

Correlations and causality

A predictive model of tree alpha diversity from contemporary

climate and remote sensing data is likely to be accurate under

the following conditions: (a) the model is able to predict

diversity in a subset of the dataset using the rest of the dataset,

(b) the variables used to build the model have similar

distributions in areas with no training data as they do in

sampled areas, (c) there is a causal relationship between the

variables in the model and tree alpha diversity, or these

variables have spatial patterns similar to those of other

variables that do have a causal effect on tree alpha diversity.

The performances of the RF and OLS models decay very

quickly with increasing distance to the inventory data points.

RF performs better than the OLS regression in areas where

ample inventory data are available, while the linear model is

more effective when inventory data are scarce, possibly because

the linear model better captures the diversity gradient between

West Africa and Central Africa. The kriging model based on

geographical coordinates performs better than the OLS and RF

models. Hence, condition (a) is partially met for all three

models; they are able to predict actual diversity in the training

dataset, with the restriction that nearby data points are

available in the training dataset. But, unfortunately, they

predict very poorly outside well-sampled areas. Not all

environmental conditions and forest types are equally repre-

sented in our training dataset because many areas remain

unexplored, or no compatible dataset was available for

inclusion into our models. Some of the variables used to

build the models have values outside the range of those present

in our training dataset in part of the study area (see Fig. 3 in

Parmentier et al., 2007). Condition (b) is thus not totally met,

and this may affect the predictive power of the OLS and RF

models. However, this cannot explain the low predictive power

at distances beyond 50 km because environmental variables are

still highly autocorrelated at 50 km (Fig. 4), such that the

training dataset must include representative environmental

conditions.
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The average plot size (0.3 ha) is much smaller than the grid

cell size of each of the explanatory variables (100 ha),

potentially obscuring the relationship between diversity values

and these variables. However, the high spatial autocorrelation

of diversity for nearby plots (< 1 km, see Fig. 4) suggests

that the intra-pixel heterogeneity or the lack of intra-pixel

resolution cannot explain the low predictive power of the

models based on climatic and remote sensing data.

Is there a causal relationship between the important

variables in the models and tree alpha diversity? The RF and

OLS models agree on the importance of elevation and of the

QSCAT mean. However, the positive relationship between

elevation and alpha diversity observed here is in contradiction

with what has been traditionally reported in the literature (see

Givnish, 1999; for a review). Parmentier et al. (2007) have

previously shown that, for similar elevational ranges, the

relationships of alpha diversity with elevation were reversed in

Amazonia and Africa. QSCAT was the best predictor of tree

alpha diversity in the Maxent model for the Amazonian rain

forest (Saatchi et al., 2008) and was interpreted as describing

properties of the forest canopy: roughness and moisture. This

mix of consistent and inconsistent results between studies does

not help in answering the question of the causality, so that

condition (c) might not be met.

If there are weak direct or indirect causal relationships

between local diversity and the climate or remote sensing

variables considered, how could a predictive model show good

performances in the vicinity of existing data points? An

explanation may lie in the strong spatial dependency displayed

by all the variables and the heterogeneous distribution of plot

data. The very high Moran’s I values at short distances imply

that nearby plots share similar diversity values as well as similar

values for explanatory variables. Because the regression models

fit a dataset where a majority of data points are concentrated in

a limited number of areas, there is a high level of spatial

pseudoreplication. Actually, if available plots were concen-

trated in only two narrow areas displaying contrasting diversity

values, the apparent prediction power would approach

pseudo-R2 = 1, typical for a regression based on two points.

A nonlinear model such as RF could perform better than a

model constrained by linear relationships (OLS) because

higher degrees of freedom permit a larger number of particular

local associations among variables to be accounted for. Spatial

pseudoreplication thus overestimates the intrinsic predictive

power of modelling approaches based on georeferenced

variables. Within the RF model, performance is evaluated by

training the algorithm on random subsets of the dataset and

testing the performance on the remaining subsets. Because

subsets taken at random from the inventory data are used,

there is no control of the impact of spatial dependency. Kriging

probably performs better than the two other models because it

avoids local components of non-spatially structured environ-

mental variation driving richness. Similarly, in a species

distribution modelling study, Bahn & McGill (2007) showed

that spatial interpolation led to better predictive models than

habitat-based models (environmental variables).

We argue that the simple approach proposed here,

whereby the quality of model prediction was evaluated in

a spatially explicit way (removal of all nearby data points

from the training dataset for increasing distances, Fig. 2),

should be applied when predicting spatial patterns from

experimental models to assess the spatial extent of model

reliability.

Other studies attempting to map diversity using climate and

remote sensing data may provide more reliable predictions, for

example, when the study area encompasses several diversity-

contrasted vegetation types displaying distinctive spectral

signatures and/or responding to climatic gradients. We did

not use theoretical models based on water–energy dynamics

(e.g. O’Brien, 2006) because we limited our study to one

biome, the rain forest, and to an area with limited variations in

latitude and elevation (< 900 m). It is possible that these

models would provide good first-order predictions, for

instance a lower diversity in West Africa than in Atlantic

Central Africa, but would not provide detailed patterns of tree

alpha diversity within these two regions.

We do, however, observe diversity patterns in the inventory

data. These diversity patterns might well reflect the history of

past climate and vegetation changes rather than adaptation to

contemporary environmental conditions (Hawthorne, 1996;

Wieringa & Poorter, 2004; Parmentier et al., 2007). Fossil

pollen data document strong modifications of the floristic

composition of the African rain forest through time: the most

important occurring during the Last Glacial Maximum (Maley,

1991). According to Bonnefille (2007), the modern composi-

tion of the different types of rain forest known today in

Atlantic Central Africa only dates from between a few centuries

to 1000 years. Considering the limited dispersal capacities of

most rain forest trees (Muller-Landau et al., 2008), it is likely

that part of the rain forest species pool has not had enough

time to reach all the contemporary suitable environments. The

idea that diversity might be in equilibrium with local

deterministic environmental factors is thus questioned. In

Amazonia, Stropp et al. (2009) partitioned total tree alpha

diversity into regional and local components, which are

controlled by evolutionary and ecological processes, respec-

tively. Regional diversity was correlated with palaeoclimatic

stability and long-term large-scale ecosystem dynamics, both

mechanisms contributing to high diversity in the central to

western Amazon. It is likely that in African rain forests as well,

regional scale differences in tree alpha diversity originate at

least partly from historical factors.

At first sight, the absence of a clear relationship between

environmental variables and diversity patterns might be

interpreted as supporting Hubbell’s neutral community

theory, where all individuals are assumed to have the same

behaviour irrespective of their species (Hubbell, 2001).

However, the distribution of each species could be affected

by environmental variables (implying a non-neutral behav-

iour) while the superposition of all distributions could result

in diversity gradients uncorrelated with environmental gra-

dients.
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CONCLUSIONS

Predicting tree alpha diversity within unsampled rain forests

from climatic and remote sensing data is an attractive

approach to compensate for the lack of inventory data. Yet,

its effectiveness has to be carefully tested (Araújo, 2003). Our

models failed to produce reliable predictions in areas > 50 km

from the nearest sampled data points. The predictive powers of

the models at short distances are likely to be due to the strong

spatial autocorrelation displayed by tree alpha diversity and

climatic or remote sensing explanatory variables. This explains

why models based on these explanatory variables were less

powerful than a kriging model based on spatial data alone.

Similar studies may suffer the same kind of problems, and it is

strongly recommended that model validation is tested while

controlling for spatial dependency (Currie, 2007), such as

performed in this study (Fig. 2). This is particularly important

when producing predictive maps, as projections from fine

resolution variables (e.g. Fig. 5a,b) produce maps with high

levels of detail. In fact, high resolution predictions do not

guarantee reliability (the less detailed Fig. 5c was shown to be

more reliable than Fig. 5a,b) and all the maps in Fig. 5 were

shown to be potentially misleading in non-sampled areas.

Predictions could possibly be improved by using other

contemporary variables and/or considering historical factors

in the models. Due to the difficulties in modelling tree alpha

diversity in the African rain forests and given the large amount

of unsampled area on our raw data map, more fieldwork in

unexplored areas would certainly be a key to progress.

ACKNOWLEDGEMENTS

We thank the editor, Michael Patten, and two anonymous

referees who gave useful comments and suggestions on an

earlier draft of this manuscript. We wish to thank Lourens

Poorter, Renaud Cortay, Hannsjörg Wöll, John Weingart and
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