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Abstract 
Context  Nutrient connectivity across landscapes 
and seascapes plays a fundamental role in shaping 
the structure and function of coastal ecosystems. A 
whole-system understanding of the spatial–tempo-
ral dynamics and ecological significance of nutrient 
connectivity is essential for developing more effective 
coastal management strategies.

Objectives  The aim of this study is to summarize 
the recent state-of-science in coastal nutrient con-
nectivity research and identify future research needs. 
We then propose an integrated and solution-oriented 
scientific framework to advance a landscape ecology 
approach to address the research needs.
Methods  We conducted a systematic literature 
review of 77 studies on nutrient flows in tropical and 
subtropical coastal marine environments (coral reefs, 
mangroves, and seagrasses) that have been conducted 
over the past decade.
Results  Few studies considered interlinkages 
between multiple coastal habitats. Most (73%) studies 
that examined ecological impacts of nutrient connec-
tivity focused on anthropogenic terrestrial runoff and 
indicated negative ecological responses to nutrients. 
Few studies adopted landscape ecology concepts and 
methods. We identified 15 research needs for advanc-
ing coastal nutrient connectivity research. Urgent 
research needs include the impacts of climate change 
on nutrient connectivity, the interactions between 
multiple nutrient pathways across habitats, and the 
social-economic drivers and impacts of change. An 
integrated framework that we term nutrientscape 
ecology is presented as a way forward.
Conclusions  The nutrientscape ecology framework 
emphasizes the spatially explicit study of pattern-
process relationships across multiple scales and lev-
erages concepts and methods from landscape ecology 
and systems thinking. We seek to inspire interdisci-
plinary research collaborations and the development 
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of a predictive science of nutrient connectivity that 
informs coastal management.

Keywords  Systematic literature review · Nitrogen · 
Phosphorus · Seascape · Landscape ecology · Social-
ecological systems

Introduction

Nutrients are the critical building blocks of all living 
organisms (Vitousek and Howarth 1991; Fennel and 
Testa 2019). In both terrestrial and aquatic environ-
ments, the availability of key nutrients such as nitro-
gen and phosphorus is the most common limiting 
factor for primary productivity (Ryther and Dunstan 
1971; Elser et al. 2007; Bristow et al. 2017). Indeed, 
nutrient availability can produce cascading effects 
in the food web from primary producers to higher 
trophic levels, thereby fundamentally shaping eco-
system structure and function (Vitousek and How-
arth 1991; Peñuelas et al. 2020). Nutrient availability 
is often determined by nutrient connectivity, defined 
here as the nutrient flows that connect locations in 
space and time, forming spatial–temporal linkages 
between entities such as food webs, habitats, and eco-
systems (Loreau et  al. 2003; Galloway et  al. 2004; 
Tuerena et al. 2022). Nutrient flows within and across 
ecosystems are highly complex as they operate and 
interact across multiple spatial and temporal scales 
(Shantz et  al. 2015; Fong and Fong 2018; Graham 
et al. 2018; Wang et al. 2018b; Adam et al. 2020).

Human activities have significantly modified 
the flow of nutrients over millennia (Doughty et  al. 
2016; Peñuelas et al. 2020). Changes to nutrient con-
nectivity across ecosystems include the disruption 
of animal-vectored nutrient pathways. For example, 
seabirds foraging at sea transport nutrients through 
guano to land where they roost and nest (Croll et al. 
2005). These seabird-vectored nutrient subsidies can 
subsequently leach into adjacent coastal waters (Gra-
ham et al. 2018; Savage 2019; Benkwitt et al. 2021a). 
However, on many tropical islands, seabird popula-
tions have drastically declined due to the introduction 
of invasive rats by humans (Jones et  al. 2008; Dias 
et  al. 2019). As a result, the magnitude of seabird-
vectored nutrient flows between land and sea has 
diminished (Benkwitt et al. 2021a). In addition to the 
disruption of animal-vectored nutrient pathways, new 

anthropogenic sources of nutrients have been created 
through, for example, the runoff of industrial fertiliz-
ers from agriculture, the release of wastewater, fossil 
fuel combustion, amplified fire regimes, and aqua-
culture (Seitzinger et  al. 2010; Peñuelas et  al. 2020; 
Wang et  al. 2020; Tang et  al. 2021). Furthermore, 
various human modifications of the landscape and 
seascape, such as the building of channels, impervi-
ous surfaces, and dredging, have altered the location 
and speed of nutrient flows (McCann et al. 2021). The 
human-induced changes in the location, timing, mag-
nitude, and interactions of nutrient flows have had 
significant and cascading impacts on both terrestrial 
and aquatic ecosystems (Galloway et al. 2003; Borer 
et  al. 2014). For example, in coral reef ecosystems, 
changes in nutrient connectivity have altered coral 
reef biogenic structure, community composition, and 
ecological functions (Fabricius 2005; Shantz et  al. 
2015; Benkwitt et al. 2019, 2021b).

Changes in nutrient connectivity may lead to irre-
versible changes in ecosystems (Steckbauer et  al. 
2011; Breitburg et al. 2018). For instance, increased 
anthropogenic nutrient loading to coastal waters has 
resulted in widespread eutrophication and higher 
rates of organic matter deposition to the seafloor 
(Maúre et al. 2021). In some cases, eutrophication has 
resulted in extreme deoxygenation and the formation 
of “dead zones”, as documented, for example, in the 
northern Gulf of Mexico (Dodds 2006; Rabalais and 
Turner 2019). Once a certain threshold of deoxygena-
tion is breached, the resulting biogeochemical feed-
backs may lead to hysteresis, i.e., the inability of the 
ecosystem to recover even when the nutrient load to 
coastal waters is decreased (Steckbauer et  al. 2011). 
These “dead zones” are becoming increasingly wide-
spread in coastal ecosystems worldwide (Diaz and 
Rosenberg 2008; Rabalais and Turner 2019; Malone 
and Newton 2020). The magnitude and geographi-
cal extent of eutrophication and hypoxia in coastal 
waters globally suggest that humanity has already 
crossed the planetary boundary for biogeochemi-
cal flows, increasing the risk of broad-scale abrupt 
or irreversible environmental changes (Rockström 
et  al. 2009; Bunsen et  al. 2021; Richardson et  al. 
2024; Rose et al. 2024) and indicating an urgent need 
for improved management of nutrient connectivity 
worldwide (Nash et  al. 2017). Altered nutrient con-
nectivity is a key driver of marine ecosystem regime 
shifts globally, with impacts compounded by multiple 
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interacting stressors, including global warming and 
overfishing (Levin and Möllmann 2015; Rocha et al. 
2015).

Recent research has shown that effective manage-
ment of nutrient connectivity and restoration of ben-
eficial animal-vectored nutrient flows and feedbacks 
could strengthen the resilience of coastal ecosystems 
to other stressors, such as the increased frequency and 
magnitude of extreme weather events caused by cli-
mate change (Mcleod et  al. 2019; Gove et  al. 2023; 
Benkwitt et  al. 2024). Due to the contrasting eco-
logical impacts of nutrient flows from anthropogenic 
and non-anthropogenic sources, the management of 
coastal nutrient connectivity would ideally consist of 
mitigative and restorative actions. For example, a mit-
igative intervention could be the reduction of anthro-
pogenic nutrient runoff from land to sea to decrease 
detrimental effects on coral reef physiology (Fab-
ricius 2005; D’Angelo and Wiedenmann 2014). An 
example of a land-sea restorative intervention is the 
restoration of seabird populations and the associated 
beneficial seabird-vectored nutrient flows, which can 
enhance coral reef ecosystem functions and support 
the recovery of coral reefs from extreme heat waves 
(Benkwitt et al. 2021b, 2024).

It is increasingly recognized that developing 
improved management of nutrient connectivity and 
effective resilience-based management of coastal 
ecosystems requires a whole-system understanding 
of the context-specific effects of nutrient flows and 
their various sources and interactions across multi-
ple spatial–temporal scales (Shantz and Burkepile 
2014; Malagó and Bouraoui 2021; Vigouroux and 
Destouni 2022). However, traditional field-based 
surveys are typically characterized by data collec-
tion at a single spatial scale within a narrow tem-
poral window, thereby only forming a collection of 
snapshots of the system’s patterns and processes 
(Knee et  al. 2016; Wang et  al. 2018a). Further-
more, Sitters et  al. (2015) suggested that research 
has largely focused on unidirectional flows of 
nutrients, with limited consideration of recipro-
cal nutrient flows between spatially connected 
ecosystems. Indeed, our understanding of nutrient 
connectivity, particularly its spatial–temporal pat-
terns, ecological significance, and causative path-
ways linked to recent human activities, still pre-
sents important knowledge gaps (Sitters et al. 2015; 
Nash et  al. 2017; Fong and Fong 2018). To better 

inform resilience-based environmental manage-
ment and restoration strategies, integrated research 
approaches that seek to understand nutrient connec-
tivity from a whole-system perspective are needed 
(Riechers et  al. 2021). Although calls for a more 
integrated land-sea management are many, a con-
comitant shift is lacking in the scientific framework 
and the major funding programs to provide the inte-
grated science at spatial and temporal scales that are 
required for whole-system decision-making (Beger 
et al. 2010; Álvarez-Romero et al. 2011).

In this study, we conducted a systematic literature 
review to understand the dominant approaches to the 
scientific study of coastal nutrient connectivity, evalu-
ate key knowledge gaps, and systematically identify 
future research needs. We were especially interested 
in evaluating the application of landscape ecology 
concepts and methods to coastal nutrient connectiv-
ity. We focused the scope of this study on three major 
marine coastal habitat types in tropical and subtropi-
cal environments: coral reefs, seagrass meadows, and 
mangroves. These coastal habitat types support high 
biodiversity and provide essential ecosystem services, 
yet they are degrading rapidly due to multiple anthro-
pogenic drivers of change (Duarte 2002; Barlow et al. 
2018; Goldberg et al. 2020). We anticipate, however, 
that many of the general recommendations emerging 
from our literature review will also be applicable to 
temperate coastal ecosystems (Lønborg et  al. 2021). 
We addressed the following research questions in our 
literature review: (1) Which nutrient pathways have 
received the most and the least research attention over 
the last ten years? (2) What are the dominant meth-
ods and spatial–temporal scales of data collection? 
(3) How prevalent is the use of integrative conceptual 
frameworks, such as landscape ecology or integrated 
land-sea approaches, in studying coastal nutrient con-
nectivity? (4) How often do studies consider the eco-
logical impacts of nutrient connectivity or the man-
agement implications of their results? Building on 
the results of the systematic literature review, we then 
identified 15 future research needs for nutrient con-
nectivity research in tropical and subtropical coastal 
environments. Finally, to help advance a scientific 
framework to address these research needs, we pro-
pose an integrated, spatially explicit, and multiscale 
framework for nutrient connectivity studies that we 
refer to as nutrientscape ecology.
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Methods

Key concepts and definitions

We define the key concepts used in this study to 
establish conceptual clarity. By nutrient connectivity, 
we refer to the flows of nutrients in space and time 
that connect food webs, habitats, and ecosystems. A 
connection type defines which realms (i.e., land, air, 
sea, sediment) are connected by nutrients. A nutri-
ent pathway is a specific type of connection process, 
such as atmospheric deposition or seabird-vectored 
nutrients. A nutrient flow is the physical movement 
of nutrients in space and time. The flow rate can be 
quantified with units such as m3/s or µg/h. By defi-
nition, a nutrient flow occurs between a source sys-
tem and a recipient system. A nutrient source is the 
location from which a nutrient flow originates. For 
example, a sewage outfall is an anthropogenic nutri-
ent source. Nutrient connectivity between two enti-
ties, such as a seagrass meadow and a coral reef, can 
consist of multiple nutrient pathways and may be uni-
directional or reciprocal (Sitters et al. 2015).

To understand the spatial–temporal dynamics 
of nutrient connectivity, it is essential to study spa-
tial and temporal patterns (Risser 1990). Landscape 
ecology focuses on pattern-process relationships by 
quantifying spatial and temporal patterns at a range 
of scales and investigating their ecological conse-
quences (Turner 1989; Wiens 2002). Although a 
relatively young science, landscape ecology has made 
important contributions to our understanding and 
management of the linkages between nutrient path-
ways and landscape patterns in river catchments (Lik-
ens and Bormann 1974; Hunsaker and Levine 1995; 
Erős and Lowe 2019; Torgersen et al. 2021). Here, we 
define key concepts applied in landscape ecology. A 
spatial (temporal) pattern refers to a structural fea-
ture of the landscape or seascape or a spatial (tempo-
ral) distribution (Turner 1989; Wedding et al. 2011). 

Landscape and seascape spatial patterns can be quan-
tified using spatial pattern metrics that measure the 
composition or configuration of the structural features 
studied (Wedding et  al. 2011; Pittman et  al. 2021). 
Composition metrics quantify the type, number, and 
proportion of the landscape and seascape structural 
features. Configuration metrics quantify the spatial 
arrangement of patches and mosaics, such as the jux-
taposition of different habitat patches, fractal dimen-
sion, patch isolation or contagion (Fahrig et al. 2011; 
Turner and Gardner 2015), and spatial gradients 
of structure, such as surface morphometry (Lausch 
et  al. 2015; Kedron and Frazier 2019). Importantly, 
the observation and measurement of the pattern 
depends on scale, i.e., the spatial or temporal dimen-
sion of the study, determined by both resolution and 
extent. Resolution is the precision of measurement (or 
grain), while extent refers to the area and duration of 
the study (Wiens 1989; Turner and Gardner 2015). 
Finally, context describes the social-ecological sur-
roundings of a focal area in space and time (Fahrig 
et al. 2011; Turner and Gardner 2015).

Systematic literature review

We conducted a systematic literature review of 
coastal nutrient connectivity studies in tropical and 
subtropical coastal environments over the past decade 
(01/01/2012–29/08/2022). We followed the guide-
lines of the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) extension 
in ecology and evolutionary biology (O’Dea et  al. 
2021). The literature search was conducted on the 
Web of Science and Scopus on 29/08/2022. All the 
databases available on these platforms were included 
in the search. The steps of the literature search and 
screening strategy are provided in the PRISMA 2020 
flow diagram (Fig. 1).

The list of studies included in the review and the 
justifications for the exclusion of each article are pro-
vided in Appendix A (Tables A1, A2). The reporting 
items only relevant for quantitative meta-analyses 
were excluded (Appendix A, Table A3). A list of data 
items recorded from each study is provided in Appen-
dix A, Table A4.

To address Research Question 3 “How prevalent is 
the use of integrative approaches, such as landscape 
ecology or integrated land-sea frameworks?”, the key-
words used were: “integrated land-sea”, “ridge-to-reef”, 

Fig. 1   The PRISMA 2020 flow diagram describing each stage 
of the literature search and screening process adapted from 
Page et al. (2021). The search strategy shows the rationale for 
the inclusion of keywords in the search string applied in this 
systematic literature review. The asterisk (*) at the end of the 
keyword broadens the search by representing any group of 
characters. This allows for capturing, for example, the plural 
forms of the keywords (http://​www.​prisma-​state​ment.​org/​Refer​
ences)

◂

http://www.prisma-statement.org/References
http://www.prisma-statement.org/References
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“summit-to-sea”, and “catchment-to-sea”, spelled with 
or without hyphens. Additionally, we searched the 
studies for “landscape” or “seascape” ecology and the 
associated key concepts (see section "Key concepts and 
definitions").

Limitations

Although we focus on recent studies, we recognize that 
a large body of literature has evolved since the pio-
neering studies on coastal nutrient connectivity in the 
mid-twentieth century (Hutchinson 1948; Odum 1953, 
1968). Our interest in recent scientific practice meant 
that we designed the search strategy to capture only 
studies published in the last ten years that examined (1) 
nutrients, (2) connectivity, (3) tropical and subtropical 
coastal marine ecosystems, and (4) spatial–temporal 
dynamics. Studies that could be relevant for coastal 
nutrient connectivity were excluded if they failed to 
explicitly mention relevant search terms in the abstract, 
keywords, or title. For example, studies that mapped the 
distribution of sediments or organic matter in coastal 
environments were not retrieved if they did not refer to 
nutrients and connectivity in the framing of their study. 
This might partly explain the low number of remote 
sensing studies captured in this review. Similarly, we 
examined the prevalence of integrative approaches by 
searching for concepts that we considered to be well-
established in the study of land-sea connections in trop-
ical and subtropical environments, such as “integrated 
land-sea” (Álvarez-Romero et al. 2011) and “ridge-to-
reef” (Carlson et al. 2019) (see section "Systematic lit-
erature review"). We acknowledge that this search may 
omit some studies that do not refer to this established 
terminology of land-sea studies. To partially address 
this limitation, we also quantified the number of stud-
ies that sampled both marine and terrestrial environ-
ments. It should also be noted that the literature review 
was limited to peer-reviewed journal articles in English, 
thereby excluding gray literature and articles published 
in other languages.

Results

Nutrient pathways and coastal habitat types

The majority of studies examined unidirectional 
nutrient pathways from land or oceanic sources to a 

single focal marine coastal habitat (Fig. 2). Seventy-
eight percent of the reviewed studies focused on 
one of the three marine coastal habitat types (coral 
reefs, mangroves, and seagrasses), 15% included two 
habitat types, and 7% included three habitat types 
(Fig.  2A). Coral reefs were the most studied single 
habitat type (49%), followed by mangroves (29%) and 
seagrass meadows (1%).

Most studies (62%) focused on a single focal nutri-
ent pathway (Fig.  2B). Land-sea runoff and sub-
marine groundwater discharge received the most 
research attention (62 and 29%, respectively). A third 
of studies (33%) focused on anthropogenic nutri-
ent sources, and 28% examined nutrient flows from 
non-anthropogenic sources. The remainder (39%) did 
not explicitly distinguish between anthropogenic and 
other sources of nutrients. Eighty-one percent of the 
studies that assessed nutrient flows from non-anthro-
pogenic sources were focused on oceanic sources of 
nutrients, while the rest (19%) studied animal-derived 
nutrients.

Conceptual frameworks

Amongst studies focused on connections between 
land and sea, 12% referred to integrative approaches 
for coastal studies, such as the “ridge-to-reef” (Del-
evaux et  al. 2018, 2019; Amato et  al. 2020; Shuler 
and Comeros-Raynal 2020; Shuler et  al. 2020) or 
the “integrated land-sea” frameworks (Rodgers et al. 
2012; Comeros-Raynal et  al. 2021; Sakamaki et  al. 
2022). Additionally, two studies referred to a “catch-
ment-to-sea” approach (Quak et  al. 2016; Comeros-
Raynal et al. 2021).

One study explicitly employed the landscape ecol-
ogy framework (Rodgers et al. 2012). Rodgers et al. 
(2012) quantified spatial patterns of coastal landcover 
and land use and modeled the relationship between a 
watershed health index and coral reef health. Addi-
tionally, some studies applied key concepts or metrics 
associated with landscape ecology (e.g. spatial pat-
tern, context, and configuration—see section  "Key 
concepts and definitions"), without explicitly situat-
ing their study in the wider landscape ecology con-
ceptual framework and scientific literature. Seventy-
six percent of studies considered spatial patterns, for 
example by discussing the spatial distribution or iden-
tifying a spatial gradient of nutrient concentrations. 
However, as many as 16 of these studies did not use 
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the concept of “spatial pattern” explicitly, indicating 
a limited take up of landscape ecology ideas within 
the coastal nutrient connectivity literature. Several 
studies quantified spatial patterns using landscape 
ecology spatial metrics such as “bottom roughness” 
(Amador et al. 2020), “habitat complexity” (Delevaux 
et al. 2018), “percent benthic cover” (Li et al. 2015; 
Yoshioka et  al. 2016; Comeros-Raynal et  al. 2021), 
without referring to landscape ecology as a concep-
tual framework. A small number of studies implicitly 
discussed the importance of landscape and seascape 

context and configuration (e.g. Quak et  al. 2016; 
Signa et  al. 2017; Delevaux et  al. 2018; Cantarero 
et al. 2019). One study used the concept “configura-
tion” (Comeros-Raynal et  al. 2021) and none used 
the concept “context” in the spatially explicit sense 
defined in landscape ecology.

Scale

Spatial and temporal scales were frequently inad-
equately quantified and reported. In many cases, 

Fig. 2   The proportion of studies that focused on A one or 
more coastal habitat types (coral, mangrove, and seagrass) and 
B different nutrient pathways. As a single study could inves-

tigate multiple nutrient pathways, the sum of the percentages 
is more than 100%. Nutrient pathways of the same connection 
type are shown in the same color
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spatial resolution and extent had to be approximated 
from maps. Half of all studies provided a rationale 
for choosing the spatial or temporal scale(s). Where 
a rationale was provided, almost half of such justifica-
tions concerned temporal scale. For example, a com-
mon justification for the choice of temporal scale was 
the importance of capturing tidal and seasonal vari-
ability or short-term rainfall events (e.g. Smith et al. 
2016; Tait et al. 2017; Wadnerkar et al. 2019).

Amongst studies that collected spatial data (67 of 
77), 41% provided information on spatial resolution. 
The most reported spatial resolutions were between 
100 m and 1,000 m (12 studies) (Fig. 3). For studies 
that collected discrete samples at multiple sites over 
the study area, spatial resolution was defined based 
on the distance between sample sites. For example, 
the spatial resolution of a study with twenty equally 

spaced sample sites within a study area of 50 × 40 m 
(2 km2) would be 10 m. Nine percent of the reviewed 
studies collected data at multiple spatial resolutions. 
In terms of spatial extent, the majority (64%) of stud-
ies were “local” (defined here as < 50 km2), while 
27% were “regional” (defined here as > 50–10,000 
km2). The remaining 9% of the reviewed studies cov-
ered study extents larger than 10,000 km2.

Nineteen studies could not be assessed for their 
temporal resolution because they did not collect tem-
poral data or because the authors did not report the 
resolution. Similarly, six studies could not be assessed 
for their temporal extent. Almost a third of the studies 
relied on a single field mission, while one-quarter of 
the studies conducted two to four field missions in a 
single year. Consequently, more than 50% of studies 
did not consider year-to-year variability in nutrient 

Fig. 3   The number of studies in the reviewed literature that collected data at the specified spatial/temporal extents and resolutions
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flows, and almost one third did not capture seasonal 
variability. Twelve percent of studies collected data at 
multiple temporal scales.

A trade-off between spatial and temporal resolu-
tions was apparent, as the studies that relied on only 
one sample site tended to justify this by the need 
to collect high-resolution temporal data (Gleeson 
et  al. 2013; Kaiser et  al. 2015; Starke et  al. 2020; 
Reithmaier et  al. 2021; Terada 2022). Similarly, 
there was a trade-off between resolution and extent. 
For example, studies with very high temporal resolu-
tions (< 1 h) tended to have a limited temporal extent 
(1–7 days), and vice versa.

Methods

Most studies focused on mapping nutrient flows 
through in-situ sampling at point locations (Fig.  4). 
Not counting coastal groundwater, rainwater, and 
mangrove samples, only one study sampled both 
marine and terrestrial environments (Quak et  al. 
2016). Few studies used field experiments, social-
economic data, local knowledge, remotely-sensed 
data, or machine learning (Fig. 4).

Stable isotope analysis was the most prevalent 
method for identifying the source of nutrients (anthro-
pogenic vs non-anthropogenic). For example, several 
studies used the elevated ratio of the nitrogen isotope 
N15:N14 (δ15N) as an indicator of nutrient flows 
from wastewater discharge (Richardson et  al. 2017; 
Amato et  al. 2020; Fong et  al. 2020; Sanchez et  al. 
2020), aquaculture (Li et  al. 2015), and runoff from 
agricultural lands (Sakamaki et al. 2022). In addition 
to δ15N, some studies analyzed the carbon isotope 
δ13C to distinguish between terrestrial and oceanic 
nutrient sources (Perez et  al. 2020; Sakamaki et  al. 
2022). Additionally, radon and radium isotopes were 
used to estimate submarine groundwater discharge 
(e.g. Gleeson et al. 2013; Smith et al. 2016; Richard-
son et al. 2017; Amato et al. 2020; Shuler et al. 2020). 
In addition to stable isotope analysis, spatial and/or 
temporal co-occurrence of likely nutrient sources and 
increased nutrient concentrations were commonly 
used as evidence of a causal connection. For example, 
Limates et al. (2016) mapped the spatial and tempo-
ral co-occurrence of poor water quality, mangroves, 
seagrass meadows, septic systems, storms, and tourist 
arrivals to determine the sources of coastal water pol-
lution and nutrient loading in the Philippines.

Ecological impacts and management

Twenty-one percent of studies discussed the effects 
of climate change on nutrient connectivity. Most 
of these studies only briefly mentioned potential 
impacts, and none included “climate change” in their 
title. Twenty percent of studies assessed the ecologi-
cal impacts of nutrient connectivity, including effects 
on coral trophic strategy and growth, coral-to-mac-
roalgae regime shifts, phytoplankton production, and 
fish density (Table  B1, Appendix B). Most (73%) 
of these studies assessed the ecological impacts of 
anthropogenic nutrient sources and terrestrial runoff. 
Fifty-one percent of studies briefly mentioned the 
potential implications of their results for manage-
ment applications, and 7% included management as 
a research focus and provided specific recommenda-
tions for managers. The ecological impacts and guid-
ance for management identified in the reviewed stud-
ies are provided in Appendix B (Tables B1 and B2).

Discussion

The importance of land-to-sea nutrient flows for 
nearshore marine ecosystems has long been recog-
nized (Odum 1968; Fabricius 2005). A large body 
of research has provided insights into the dynamics 
of nutrient flows in different coastal environments, 
from tide-driven mangrove estuaries (Gleeson et  al. 
2013; Smith et  al. 2016) to wave-driven coral reef 
environments (Huang et al. 2012; Adam et al. 2020). 
The causal links between watershed land use change, 
increased nutrient loading to coastal waters, and 
decreased water quality are well-established (Fab-
ricius 2005; Oliver et al. 2011; Kagalou et al. 2012). 
Building on this previous work, this systematic litera-
ture review advances research on coastal nutrient con-
nectivity by identifying 15 research needs that must 
be addressed to better integrate nutrient flows into 
coastal management strategies and spatial planning 
(Table  1). Following a brief discussion of the key 
findings of the literature review, we present a novel 
integrated approach for coastal nutrient connectivity 
studies that we call nutrientscape ecology, aimed at 
supporting future studies that address the identified 
research needs. We recognize that related science 
may have occurred before our decadal review period, 
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however, our focus was on the most recent state of 
practice in studying coastal nutrient connectivity.

The literature review revealed that many studies 
focused only on a single nutrient pathway. This ten-
dency is likely due to the specialization of researchers 
in particular pathways and associated methods and 
the limited time and resources to carry out fieldwork. 
However, nutrient pathways do not occur in isolation. 
Instead, we propose that the coastal nutrientscape is 
formed through the interactions of multiple nutri-
ent pathways that operate in complex ways over time 

across a geographical space (Leichter et  al. 2012; 
Shantz et al. 2015; Graham et al. 2018; Adam et al. 
2020). For example, Ziegler et  al. (2019) showed 
that while tides can directly act as physical vectors of 
nutrients, tides can also interact with animal-mediated 
nutrient pathways through their impact on food web 
dynamics. Additionally, the relatively small number 
of cross-habitat nutrient studies in coastal ecosys-
tems highlights a significant knowledge gap and also 
presents future opportunities to address our limited 
ecological understanding of interconnected coastal 

Fig. 4   Data collection and modeling methods applied to the 
study of different nutrient pathways in the reviewed literature. 
The value in each cell indicates how many studies applied a 
specific method (listed on the y-axis) to the study of a specific 
nutrient pathway (listed on the x-axis). The different nutrient 

pathways are grouped together according to their correspond-
ing connection type. Animal-vectored nutrient pathways are 
included here as a separate category, as animals may connect 
different realms depending on the species in question



Landsc Ecol           (2025) 40:48 	 Page 11 of 30     48 

Vol.: (0123456789)

seascapes (Olds et  al. 2018). Prioritizing a single 
habitat type for conservation action may reduce the 
success of conservation investments such as restora-
tion and threat mitigation (McAfee et al. 2022; Vozzo 
et al. 2023).

Different nutrient pathways operate across differ-
ent spatial and temporal scales (Shantz and Burkepile 
2014). Studies conducted at inadequate spatial–tem-
poral scales will provide narrow, oversimplified and 
potentially misleading results (point samples, snap-
shots) that do not adequately capture the ecosystem 
reality (see e.g. Shuler and Comeros-Raynal 2020). 
For example, Delevaux et al. (2019) found that their 
results were consistent with a previous regional-
scale study that did not account for within-watershed 

spatial heterogeneity. However, quantifying finer 
scale (within-watershed, 60 × 60  m) spatial patterns 
revealed ecologically meaningful insights that sup-
ported different recommendations for local manage-
ment (Delevaux et  al. 2019). Such careful consid-
eration of scale was largely lacking in most reviewed 
studies. We encourage explicit quantitative report-
ing of the study scale and data resolutions to allow 
a scale-dependent operational understanding of the 
different nutrient pathways under study. Trade-offs 
between resolution and extent may be inevitable due 
to a range of practical limitations, such as limited 
funding and resources. Our proposed nutrientscape 
framework both encourages funders to consider the 
“more than the sum of the parts” knowledge benefits 

Table 1   Future research needs in nutrient connectivity studies in tropical and subtropical coastal environments

Research needs

Nutrient pathways and coastal habitat types
1 Investigating the interactions between multiple nutrient pathways rather than focusing 

on a single pathway
2 Studying nutrient flows and their ecological impacts across terrestrial and marine envi-

ronments and multiple coastal habitat types
3 Advancing the understanding of the different nutrient sources (anthropogenic and non-

anthropogenic) contributing to the observed patterns of nutrient flows and hotspots
4 Studying the dynamics and ecological significance of animal-vectored nutrient path-

ways
Scale
5 Developing an understanding of how the spatial–temporal patterns and ecological 

impacts of nutrient connectivity change across scales
6 Collecting long-term datasets to differentiate between long-term trends and short-term 

variability
Conceptual frameworks and methods
7 Developing and applying a conceptual framework that supports whole-system research 

and cross-disciplinary study of coastal nutrient connectivity
8 Recognizing the importance of local knowledge and collaboration
9 Leveraging the potential of new technologies, such as networks of field-deployed 

instruments, remote sensing, and machine learning
10 Developing predictive science and quantifying spatial linkages between landscape and 

seascape patterns and nutrient flows
Human impacts and management
11 Examining the cumulative impact of nutrient flows and multiple stressors on the 

ecosystem
12 Advancing our understanding of the potentially contrasting ecological impacts of 

nutrients from different sources
13 Investigating the impacts of climate change on coastal nutrient connectivity
14 Investigating the feedback loops between the social-economic and ecological systems 

(social-ecological systems interactions)
15 Conducting research that specifically aims to inform local environmental management 

and restoration in practice
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of a whole-system approach and also the potential 
for bringing together different studies across scales 
resulting in economies of scale. We recognize that 
no single discipline can address the whole-system 
knowledge gap and call for more transdisciplinary 
working (e.g. between biogeochemists, ecologists, 
hydrologists, social scientists, and management 
practitioners) in the design and implementation of 
research projects.

In addition to explicit consideration of scale and 
scaling, working within a clearly defined conceptual 
framework will help advance coastal nutrient con-
nectivity research. The conceptual understanding of 
the coastal environment affects what research ques-
tions are being asked, and what methods are being 
used. For instance, in local knowledge systems across 
the Pacific Islands, land and sea are traditionally not 
understood as separate but as fundamentally inter-
connected (Hickey 2007; Poepoe et  al. 2007). This 
conceptual understanding of a land-sea continuum 
rather than a binary classification was reflected in 
the management practices. For example, Hawai’ians 
traditionally divided high islands into zones known 
as ahupua’a that generally extended from the moun-
tain into the sea (Smith and Pai 1992). This system 
allowed for the balanced management of the dif-
ferent terrestrial and marine resources along a so-
called ‘ridge-to-reef continuum’ (Smith and Pai 
1992; Minerbi 1999; Wilmot et al. 2022). In contrast, 
Western environmental research and management is 
conventionally siloed into studies of landscapes and 
studies of seascapes that are typically conducted by 
distinct and separate disciplines and managed by dif-
ferent institutional units (Stoms et al. 2005; Álvarez-
Romero et al. 2011; Collin et al. 2013, 2021).

Although conceptual frameworks to support inte-
grated land-sea management in the coastal zone have 
been proposed (Beger et  al. 2010; Álvarez-Romero 
et  al. 2011; Makino et  al. 2013), the primary focus 
has been on risk management from land-based 
sources of pollution impacting aquatic ecosystems 
(Álvarez-Romero et  al. 2011; Carlson et  al. 2019). 
Furthermore, these frameworks place little emphasis 
on the role of landscape ecology and systems science 
where spatial pattern metrics, scale, and scaling rela-
tionships provide additional insights into the funda-
mental role of landscape and seascape structure and 
function and enable scenario modeling and spatial 
prediction to unobserved regions (Wu 2004; Frazier 

2023). Here, we propose a new framework that builds 
on previous calls for integrated land-sea studies, 
specifically focusing on a whole-system, spatially 
explicit, and cross-disciplinary approach to study 
nutrient connectivity.

A shared conceptual framework for coastal nutri-
ent connectivity studies could support a broader 
application of a spatially explicit social-ecological 
systems approach and facilitate cross-disciplinary 
collaborations. Furthermore, building a coordinated 
evidence base would support greater comparability 
of results between studies and help identify and prior-
itize knowledge gaps within the research field (Fausch 
et al. 2002; Ostrom 2009; Dunham et al. 2018; Pitt-
man et al. 2018).

Nutrientscape ecology

To support research efforts that address the 15 
research needs identified (Table  1), we present here 
a new framework for nutrient connectivity studies 
that we term “nutrientscape ecology” (Fig. 5). Nutri-
entscape ecology integrates social-ecological systems 
thinking with the spatial pattern-focused concepts 
and analytical tools of landscape ecology. We propose 
that the integrated, multiscale, and spatially explicit 
study of the coastal nutrientscape—nutrientscape 
ecology—could help inform the management of 
nutrient connectivity and thereby contribute to local 
efforts to manage human impacts and increase the 
resilience of tropical coastal environments to climate 
change. Indeed, due to the fundamental role of nutri-
ent flows in determining coastal ecosystem dynamics, 
the management of nutrient connectivity ought to be 
a high priority in coastal conservation and restoration 
efforts (Howarth et  al. 2005; Seitzinger et  al. 2010). 
A key goal of our proposed nutrientscape ecology 
framework is to support solution-focused research 
that is informative and useful for local managers and 
stakeholders and helps bridge the science-policy gap.

Nutrientscape ecology: theoretical foundations

We propose that leveraging Social-Ecological Sys-
tems (SES) thinking would benefit and increase the 
policy impact of coastal nutrient connectivity research 
in several ways. First, rather than studying parts of 
the system in isolation, the aim of SES thinking is to 
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understand how system components interact to form 
the complex whole (Odum 1977; Ostrom 2009; Pitt-
man et  al. 2018). Thus, SES encourages the exami-
nation of the interlinkages between multiple habitat 
types and different nutrient pathways including link-
ages to human well-being and human impacts. Addi-
tionally, from a SES perspective, changes in nutrient 
connectivity are considered in the context of other 

drivers of change, such as climate change (Ban et al. 
2014; Zaneveld et al. 2016; Donovan et al. 2020).

Second, taking a whole-system perspective and 
studying multiple nutrient pathways requires cross-
disciplinary collaboration. However, when experts 
from different disciplines rely on different episte-
mologies, it may take considerable time and effort to 
build a shared understanding of the research problem 

Fig. 5   Nutrientscape ecology: the integrated, spatially 
explicit, and multiscale framework for studying coastal nutri-
ent connectivity. Social-ecological systems analysis can help 
us understand how distal and proximal anthropogenic drivers 
act together to alter coastal nutrient connectivity, and how the 
resulting ecological changes impact human well-being. The 

analytical and conceptual tools of landscape ecology enable 
the spatial study of pattern-process relationships associated 
with different coastal nutrient pathways at a range of scales: for 
example, from the whole island to individual habitat patches 
and from decadal trends to diurnal cycles
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statement and potential solutions. Consequently, an 
advance in nutrientscape ecology requires a shift in 
mindset from specialized single disciplinary and 
reductionist research into collaborative, cross-disci-
plinary and holistic approaches (Odum 1977; Voigt 
2011; Pittman et  al. 2018). The SES approach was 
developed as a unifying framework that facilitates the 
integration of the different research approaches and 
methods used in different disciplines to study a com-
plex system (Ostrom 2009). Hence, SES could expe-
dite the cross-disciplinary collaborations required 
for studying multiple nutrient pathways and habitat 
types.

Third, through its focus on interactions between 
components of a system, the SES approach allows 
for identifying feedback loops within and between 
the social-economic and ecological systems (Scheffer 
et al. 2001; Folke et al. 2005; Levin et al. 2013; Les-
lie et al. 2015). For example, diminishing fish stocks 
may lead to increased fishing effort by fishers that do 
not have access to an alternative livelihood. This, in 
turn, can result in an even greater reduction of the 
fish stocks (Cinner et al. 2009; Nyström et al. 2012). 
Overfishing can disrupt fish-vectored nutrient path-
ways (Layman et al. 2011) and risk deteriorating the 
food and nutritional security of coastal populations 
that depend on fish-derived micronutrients in their 
diet (Maire et al. 2021). Identifying and understand-
ing feedback loops is critical for the success of envi-
ronmental management strategies, both to avoid unin-
tended consequences of management interventions 
and to find effective levers to increase systemic resil-
ience to disturbances (Hughes et  al. 2017). Positive 
feedback loops could also be harnessed to amplify the 
impacts of a management action (Farmer et al. 2019; 
Riechers et al. 2021).

Despite theoretical and methodological advance-
ments in SES research, few studies have implemented 
a spatially explicit approach (Pittman et  al. 2018). 
Yet, understanding spatial patterns is often key for 
understanding system dynamics (Polis et  al. 1997; 
Loreau et  al. 2003; Jenerette and Wu 2004; Bailey 
2010). Spatial information is also essential for envi-
ronmental management and spatial planning (Van 
Kouwen et al. 2007; Caldow et al. 2015). To bridge 
the conceptual analysis of complex systems and 
driver-impact-relationships with the spatial study 
of real ecosystems, the analytical tools of landscape 
ecology can be leveraged (Virah-Sawmy et al. 2009). 

We propose that integration of landscape ecology and 
SES will form a solid foundation for the whole-sys-
tem science of coastal nutrient connectivity.

To support the operationalization of nutrientscape 
ecology, we provide a set of recommended questions 
to consider during the formulation of a research pro-
ject (Table 2). Then, we discuss analytical tools from 
landscape ecology and SES and explore novel tech-
nologies that could be leveraged to develop nutri-
entscape ecology as a multiscale, integrated, and spa-
tially explicit science.

Nutrientscape ecology: analytical tools

Multiscale analysis

Understanding scale is a core component of land-
scape ecology research (Turner 1989; Wiens 2002), 
and the first key recommendation for any study 
in nutrientscape ecology is quantitatively report-
ing and justifying the spatial and temporal extent(s) 
and resolution(s) of the study. Avoiding ambiguous 
and inappropriate scale selection will address a key 
knowledge gap identified in this review. The second 
recommendation is to employ a multiscale approach 
to better understand how nutrient pathways operate 
and interact across scales and avoid limitations with 
scale-dependent results. For example, biogeochemi-
cal processes that impact the composition (i.e., stoi-
chiometry) of a nutrient flow can occur at the level 
of individual organisms, ecosystems, and landscapes-
seascapes (Cherif et al. 2017; Van de Waal et al. 2018; 
Fonseca et al. 2022). A multiscale nutrientscape ecol-
ogy framework is enabled by integration of new and 
increasingly cost-effective data from drones, satel-
lites, and in-situ sensor networks that would increase 
the study’s spatial and temporal resolution and extent 
(Thomson et al. 2021; Besson et al. 2022).

Furthermore, a better understanding of long-term 
environmental change could be achieved through 
local knowledge and funding to enable location-
specific long-term research programs such as the US 
National Science Foundation’s Long-Term Ecosystem 
Research (LTER). Important advances in watershed 
nutrient dynamics and connectivity have resulted 
from the LTER programs at Hubbard Brook Experi-
mental Forest (New Hampshire) since the 1960s (Lik-
ens and Bormann 1974), Moorea Coral Reef LTER 
(Adam et  al. 2020), and Florida Coastal Everglades 
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LTER (Armitage et al. 2011). Much of this research 
has been influenced by landscape ecology and sys-
tems thinking and we encourage the continued cross-
pollination of ideas and transferable technologies 
from these disciplines to advance our understanding 
of the nutrientscape.

Integrated analysis

By “integrated nutrientscape ecology”, we mean tak-
ing a whole-system perspective on the coastal nutri-
entscape: studying land and sea, the social and the 
ecological, multiple habitats, and multiple nutrient 
pathways and their interactions. Systems mapping 
can be used to identify the system’s key components, 
their interactions and possible feedback loops, and 
proximal and distal drivers of change. This litera-
ture review revealed that many studies do not iden-
tify the proximal sources of nutrients (e.g. wastewater 

discharge), and even fewer studies identified the 
underlying social, political, or economic drivers (e.g. 
increase in unsustainable tourism). The systems map 
shown in Fig.  6 illustrates that climate change is 
expected to directly and indirectly affect many system 
components, highlighting the urgent need to address 
the knowledge gap about climate change impacts 
identified in this literature review.

Another tool for analyzing SES is the drivers–pres-
sures–state–impact–responses (DPSIR) framework 
(EEA 1999). This framework has been widely used 
to communicate chains of cause–effect relationships 
in coastal and marine environmental policy (Atkins 
et  al. 2011a, 2011b; Gari et  al. 2015; Patrício et  al. 
2016). In particular, DPSIR has often been applied to 
link drivers of land-based nutrient loading to eutroph-
ication in coastal waters (Karageorgis et  al. 2005; 
Pirrone et  al. 2005; Pinto et  al. 2013). Compared to 
a systems map, a disadvantage of this framework is 

Fig. 6   Systems map of the coastal nutrientscape. The key 
nutrient pathways are shown in dashed-lined boxes and solid 
arrows. Impacts and interactions between the different com-

ponents of the system are shown in dashed arrows. The black 
boxes and black solid arrows show anthropogenic impacts on 
the system components
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that it proposes linear unidirectional causal chains 
and fails to capture complex system dynamics and 
interactions (Rekolainen et  al. 2003; Niemeijer and 
de Groot 2008). Nevertheless, coupled with a whole-
system approach, the DPSIR framework can be use-
ful for structuring problems by identifying and com-
municating the proximal and distal anthropogenic 
drivers of environmental change (Atkins et al. 2011a; 
Lewison et al. 2016).

Missing from both the systems map and the DPSIR 
framework are the spatial and temporal dynamics 
(Cumming et  al. 2017; Agramont et  al. 2022). For 
example, at relatively broad scales (10–100  s  km, 
seasons-years), there can be temporal variation in the 
circulation patterns of coastal waters caused by the 
monsoon season or El Niño (Craig et al. 2007; Wang 
et al. 2019). Similarly, surface runoff is often spatially 
and temporally focused, for example near agricul-
tural lands during and after a large storm (Adam et al. 
2020; Fong et al. 2020).

The whole-system study of coastal nutrientscapes 
will require integrating data collected across the 
land-sea continuum including social-economic data. 
When conducting research in the lands and seas of 
indigenous peoples, the conceptual framework should 
support pluralistic knowledge creation and the decol-
onization of research (Smith 2021; Reynolds and 
Wheeler 2022). A greater appreciation and applica-
tion of local knowledge, in written form or through 
surveys and interviews, could help advance nutri-
entscape ecology by providing important historical 
and local contextual information. Participatory map-
ping can be a useful tool to summarize and visualize 
local knowledge in a spatially explicit way (Klonner 
et al. 2021).

Spatial analysis

Developing accurate spatial models of nutrient con-
nectivity is challenging because a nutrient flow is 
affected by biogeochemical processes taking place at 
different scales (Turner and Gardner 2015; Smithwick 
2021), and the stoichiometry of the flow changes as it 
moves through space and interacts with the surround-
ing biotic and abiotic features (Schade et al. 2001; Sit-
ters et al. 2015). Thus, the quantity and composition 
of a nutrient flow is a function of the local conditions 
(i.e., the biogeochemical processes occurring within a 
habitat patch), the composition and configuration of 

the surrounding environment (e.g. distance to differ-
ent habitat patches), and the resistance to movement 
to, and away, from that point (e.g. water flow veloc-
ity determined by terrain roughness) (Gergel 2005; 
Turner and Gardner 2015).

Landscape ecology provides powerful tools for 
connectivity modeling that leverage the physical 
attributes of the landscape or seascape (Calabrese 
and Fagan 2004; Treml and Kool 2017). Terres-
trial landscape ecology studies have highlighted the 
importance of geomorphological metrics such as 
slope, curvature, and terrain roughness in determin-
ing nutrient connectivity (Moore et  al. 1991; Chad-
wick and Asner 2016). For instance, in agricultural 
lands, soil phosphorus tends to be deposited in flatter, 
downslope areas where runoff converges and slows 
due to local curvature (Evans et al. 2016). Quantify-
ing slope, curvature, and terrain roughness is founda-
tional in hydrology (Hendriks 2010) and widely used 
in seascape ecology studies of fish distribution and 
movement (Borland et  al. 2021). However, the link 
between these geomorphological metrics and nutri-
ent connectivity in coastal seascapes remains largely 
unexplored (Hearn et al. 2001), presenting an exciting 
research avenue for the spatially explicit, predictive 
study of the coastal nutrientscape.

In addition to geomorphological metrics, spatial 
pattern metrics that quantify habitat composition 
and configuration could be leveraged to model and 
predict the stoichiometric transformation of nutrient 
flows across geographical space (Sitters et  al. 2015; 
Smithwick 2021). Several studies have leveraged ter-
restrial composition and configuration metrics to pre-
dict riverine water quality and nutrient concentrations 
(Uuemaa et al. 2005; Wu and Lu 2019). In a pioneer-
ing surface-flow simulation study, Gergel (2005) 
found that the spatial configuration of land cover 
types is most important in the prediction of nutri-
ent connectivity patterns in watersheds with inter-
mediate relative abundance of different cover types. 
In an empirical study, Jones et  al. (2001) found that 
while land cover spatial pattern metrics were able to 
explain 65–86% of the variation in nitrogen loading 
to streams, the predictive power varied depending 
on the biophysical characteristics of the watershed 
(e.g. the relative importance of atmospheric nitrate 
deposition). The findings of these pioneering stud-
ies suggest that developing spatial analysis in nutri-
entscape ecology could allow establishing heuristics 
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for determining when simple composition metrics 
are sufficient and when more elaborate configuration 
metrics would be needed. We advocate building on 
these terrestrial case studies and developing predic-
tive modeling of nutrient connectivity across land and 
sea.

Nutrientscape ecology: novel technologies

In addition to analytical developments, we iden-
tify recent technological advancements to support 
the operationalization of nutrientscape ecology in 
practice. We note that technological and theoreti-
cal advancements go hand in hand whereby novel 
approaches for data collection and computational 
modeling may be used to both inform and test nutri-
entscape ecology theory. We anticipate that future 
technological evolution and application of an inte-
grated nutrientscape conceptual framework will ena-
ble the formulation of novel research questions and 
hypotheses.

Data collection

New remote sensing technologies provide unprec-
edented amounts of environmental data. Multiple sat-
ellite constellations now provide daily revisit times, 
and the spatial and spectral resolutions have been 
improving at each generation of satellites (Fig.  7). 
Additionally, drone-based mapping can achieve up 
to a sub-centimeter scale spatial resolution while also 
avoiding the issue of persistent cloud cover in many 
tropical coastal regions (Collin et  al. 2018; Ben-
nett et al. 2020). Marine and terrestrial habitat maps 
derived from satellite and drone data can be used to 
calculate composition, configuration, and geomor-
phological metrics, thereby supporting spatially 
explicit nutrient connectivity modeling (Lepczyk 
et  al. 2021). Furthermore, while nutrients dissolved 
in water do not have a significant optical signal, their 
presence can be inferred through a number of prox-
ies detectable from remotely-sensed data (Soto et al. 
2009; Wang et  al. 2018a). For example, increased 
nutrient loading can result in elevated phytoplank-
ton biomass in coastal waters (i.e., greener surface 
waters), which can be detected from remotely-sensed 
imagery presenting opportunities for spatial indica-
tors of change (Cillero Castro et al. 2020; Cael et al. 
2023). Thermal infrared sensors mounted on drones 

or satellites can be used to map sea surface tempera-
ture and thereby identify potential groundwater dis-
charge sites (Oehler et al. 2018; Oberle et al. 2022). 
Dye tracing experiments that leverage drones allow 
tracking coastal water flows at very high spatial reso-
lutions (Johansen et al. 2022).

In addition to remote sensing, there is opportunity 
for developing networks of field-deployed sensors 
capable of data collection at high temporal resolu-
tions (1  s to 24  h) (Fig.  7B) (Bieroza et  al. 2023). 
Field-deployed sensors can provide detailed time-
series data that cannot be obtained from traditional 
field sampling and subsequent laboratory analyses 
(Reading et al. 2017). Nutrients such as ammonium, 
nitrate, and phosphate can be measured using wet-
chemistry sensors and ion-selective electrodes (Pel-
lerin et  al. 2016). Additionally, optical sensors can 
be leveraged to estimate a range of key parameters 
associated with biogeochemical flows, such as turbid-
ity and concentrations of phytoplankton and colored 
dissolved organic matter (Bieroza et  al. 2023). The 
high-frequency data collection through sensor net-
works could reveal previously unobserved patterns in 
the flows and transformation processes of nutrients in 
space and time (Bieroza et al. 2014, 2023). The data 
from field-deployed sensor networks can also serve 
as calibration and validation data for remote sensing 
models (Lyu et al. 2022). However, the cost of setting 
up and maintaining a sensor network is still prohibi-
tively high for many individual research groups. Cre-
ating a comprehensive sensor network may therefore 
require a coordinated effort between multiple research 
groups and universities, as well as collaborations 
with research institutions that develop new sensor 
technologies.

The complementary use of field-deployed sen-
sor networks, remote sensing, and traditional field 
experiments enables the multiscale study of envi-
ronmental change (Shiklomanov et  al. 2019). The 
integrated application of novel technologies could 
provide insights into how local and regional altera-
tions might drive changes in global biosphere integ-
rity (Nash et al. 2017). To fully realize the potential 
of novel technologies in coastal nutrient connectiv-
ity research, interdisciplinary collaborations between 
data scientists, remote sensing experts, ecologists, 
hydrologists, and biochemists should be encouraged 
(Shiklomanov et al. 2019; Ward et al. 2020). Innova-
tive ways to combine multiple sources of data need 
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Fig. 7   A The temporal 
and spatial resolutions of 
remote sensing technologies 
(satellites and UAVs) and 
field-deployed instru-
ments. The typical temporal 
and spatial resolutions of 
traditional field campaigns 
are shown with the black 
dashed-line circle: many 
field studies collected data 
every 1–12 months to cover 
seasonal variability, at a 
spatial resolution of 100–
1000 m. B Temporal and 
spatial resolutions likely 
to be relevant for studying 
different coastal nutrient 
pathways. The selection of 
the temporal and spatial 
scale(s) will depend on the 
specific research ques-
tions of the study. Scale 
information integrated from 
Dickey (2020), Hedley et al. 
(2018), and Taniguchi et al. 
(2019)



	 Landsc Ecol           (2025) 40:48    48   Page 20 of 30

Vol:. (1234567890)

to be explored (Trantas et al. 2023). In the following 
sections, we have summarized two promising mod-
eling approaches for making full use of data from dif-
ferent sources in nutrientscape ecology: digital twins 
and physics-informed machine learning.

Computational modeling

The large quantities of environmental data provided 
by remote sensing and in-situ sensor networks is 
stimulating advances in computational modeling 
techniques, such as digital twins (Blair 2021; Blair 
and Henrys 2023). A digital twin is a virtual repre-
sentation of a physical system (Jones et al. 2020) and 
provides a spatial template with which to integrate 
and model diverse cross-scale spatial data (Brocca 
et  al. 2024). Digital twins differ from other com-
putational modeling approaches primarily through 
their usage of evolving data in real-time so that the 
states of the virtual and physical systems are syn-
chronized (Jones et  al. 2020; Wright and Davidson 
2020). In contrast, a traditional computational model 
describes the behavior of the system according to set 
processes that do not evolve over time, thereby mak-
ing the model potentially inaccurate over timescales 
within which significant alterations in the system 
and its behavior would occur (Wright and Davidson 
2020). Thus, digital twins could support timely envi-
ronmental management interventions, as the model is 
built to continuously integrate new information mov-
ing towards near-real time models (Moghadam et al. 
2020; Trantas et  al. 2023). This makes digital twins 
a promising spatial modeling approach for supporting 
nutrient connectivity management in highly dynamic 
coastal environments. However, environmental digi-
tal twins research is still nascent, and more work is 
needed to explore and realize the full potential uses of 
this modeling approach (Blair and Henrys 2023; Pur-
cell and Neubauer 2023; Purcell et al. 2023).

Another promising new technology to support 
nutrientscape ecology is physics-informed machine 
learning (Karniadakis et  al. 2021). This novel 
research field integrates physical rules and domain 
knowledge with machine learning, providing three 
key advantages for the predictive modeling of social-
ecological systems. First, while purely data-driven 
machine learning models may achieve good training 
and validation accuracies, their predictions may still 
be physically unrealistic (Karniadakis et  al. 2021). 

For example, a model trained on existing environmen-
tal data may not be able to accurately extrapolate into 
the future when environmental and climate conditions 
change (Kashinath et  al. 2021; Zhong et  al. 2023). 
Second, many traditional machine learning models 
are black boxes—in other words, the model predic-
tions are not explained in a meaningful way (Rudin 
2019). Integrating a physics-based understanding into 
the machine learning model supports the interpret-
ability of the model (Rudin 2019; Kashinath et  al. 
2021). For example, physical meaning can be incor-
porated into the intermediary nodes of a neural net-
work, thus enabling an interpretable information flow 
through the network (Wu et al. 2024). Third, applying 
purely physics-based models is limited by the require-
ment of high-quality data, expert knowledge for accu-
rate model parameterization, and a trade-off between 
computational cost and high spatial resolution (Sori-
ano et al. 2021). A number of pioneering studies have 
already applied physics-informed machine learning to 
study issues relevant for coastal nutrientscape ecol-
ogy, such as groundwater contamination (Soriano 
et al. 2021), terrestrial runoff (Zhong et al. 2023), sur-
face water flows (Bertels and Willems 2023), sea sur-
face temperature (de Bézenac et al. 2019), and ocean 
vertical mixing (Zhu et al. 2022). However, similarly 
to digital twins research, applications of physics-
informed machine learning for predictive environ-
mental modeling are only just emerging with great 
opportunity for further developments and discoveries 
(Kashinath et al. 2021).

Conclusions

Nutrient flows within and across ecosystems are 
major drivers of ecosystem structure and functions. 
These flows operate across multiple scales and are 
characterized by complex interactions. The condition 
of the nutrientscape directly and indirectly influences 
human health and well-being through intimately inter-
connected social-ecological systems. A key research 
priority is a better understanding of the local and 
global human impacts on nutrient flows and the con-
sequences of these flows on the functioning and resil-
ience of coastal social-ecological systems. This study 
summarized the recent state-of-science in tropical 
and subtropical coastal nutrient connectivity studies 
with a systematic literature review. Our results show 
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that research to date has largely focused on unidirec-
tional flows of nutrients, with limited consideration 
of the reciprocal flows between spatially connected 
ecosystems. Furthermore, nutrient connectivity stud-
ies are typically based on traditional field-based sur-
veys and sampling at a single spatial scale within a 
narrow temporal window, thereby forming a set of 
snapshots of the system’s patterns and processes. To 
develop improved resilience-based environmental 
management and restoration strategies, new research 
approaches are needed that understand nutrient con-
nectivity from a spatially explicit whole-system per-
spective. We suggest that great potential exists for a 
nutrientscape approach to advance and accelerate the 
scaling up of coastal restoration through site selec-
tion, functionally meaningful design of interventions, 
and effective cross-scale monitoring.

Building on the results of our review, we identi-
fied 15 future research needs and presented a novel 
research approach that we called “nutrientscape ecol-
ogy”. The framework of nutrientscape ecology serves 
three primary purposes. First, this framework can 
advance coastal nutrient connectivity research as a 
multiscale, spatially explicit study of pattern-process 
relationships across landscapes and seascapes by 
applying landscape ecology concepts and analytical 
methods. Second, this work can support the applica-
tion of systems thinking that goes beyond the study 
of individual nutrient pathways in isolation and situ-
ates the nutrient flows and pathways in the wider 
context of the coastal social-ecological system. 
Third, the framework encourages the novel integra-
tion of advanced technologies in nutrient connectivity 
research that are capable of generating insights into 
nutrient connectivity at scales meaningful to envi-
ronmental management, conservation, and spatial 
planning. These technologies include remote sens-
ing, field-deployed sensor networks, machine learn-
ing, and digital twins. A likely barrier to the imple-
mentation of the nutrientscape ecology framework 
is securing sufficient funding to conduct multiscale, 
cross-disciplinary research. Thus, there is a need for 
novel funding programs that understand the critical 
importance of nutrient connectivity to coastal social-
ecological systems and recognize the benefits of a 
whole-system approach, cross-disciplinary collabora-
tions, and long-term environmental monitoring.

While this literature review focused on tropical and 
subtropical coastal environments, the nutrientscape 

ecology framework can be readily applied to the 
study of nutrient connectivity in other coastal envi-
ronments. This work can serve as a foundation to 
develop a predictive and solution-oriented science of 
nutrient connectivity that supports local management 
efforts in the context of mitigating and adapting to 
accelerated global warming and other environmental 
changes.
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