Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands

IMMACULADA OLIVERAS,1* MAARTEN VAN DER EYNDEN,2,3 YADVINDER MALHI,1 NELSON CAHUANA,4 CARLOS MENOR,5 FLOR ZAMORA4† AND TORBJÖRN HAUGAASEN2

1Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX13QY, UK (Email: imma.oliveras@ouce.ox.ac.uk); 2Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, and 3The Government of Norway’s International Climate and Forest Initiative, Norwegian Ministry of the Environment, Oslo, Norway; 4Universidad Santo Antonio Abad del Cusco, Cusco, Peru; and 5Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain

Abstract The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass species in Peruvian high altitude grasslands, considering maximum height (hmax), elliptical crown area and elliptical basal area. Although these predictors are commonly used among allometric literature, they have not previously been used for estimating puna grassland biomass. Total above-ground biomass was estimated to be of 6.7 ± 0.2 Mg ha⁻¹ (3.35 ± 0.1 Mg C ha⁻¹). All allometric relationships fitted to similar power-law models, with basal area and crown area as the most influential predictors, although the fit improved when tussock maximum height was included in the model. Multispecies allometries gave better fits than the other species-specific equations, but the best equation should be used depending on the species composition of the target grassland. These allometric equations provide an useful approach for measuring above-ground biomass and productivity in high-altitude Andean grasslands, where destructive sampling can be challenging and difficult because of the remoteness of the area. These equations can be also applicable for establishing above-ground reference levels before the adoption of carbon compensation mechanisms or grassland management policies, as well as for measuring the impact of land use changes in Andean ecosystems.

Key words: above-ground productivity, Andes, Calamagrostis spp., carbon stock, puna.

INTRODUCTION

Estimation of carbon stocks in tropical ecosystems and emissions of greenhouse gases from tropical deforestation and forest degradation have received increasing attention in recent years (e.g. Maniatis & Mollicone 2010; Asner 2011). Progress in developing a forest carbon compensation mechanism for tropical countries under the United Nations Framework Convention on Climate Change (UNFCCC), commonly referred to as Reduced Emissions from Deforestation and Forest Degradation – REDD+ (e.g. UNFCCC 2010), has sparked further research on establishing reliable methods for carbon estimation in tropical ecosystems (Phillips et al. 1998; Malhi & Phillips 2004; Saatchi et al. 2007; Asner 2009). Tropical forests have received the most attention (e.g. Saatchi et al. 2011; Asner et al. 2012), but other tropical non-forest ecosystems can also contain substantial amounts of carbon (e.g. Scurlock & Hall 1998; Scurlock et al. 2002; Gibbon et al. 2010).

The Andean Neo-tropical tussock grasslands (termed as puna or páramo depending on their species composition) span the entire tropical Andes, and represent the main ecosystem at altitudes above approximately 3500 m a.s.l. However, despite their extensive distribution, we lack integrative descriptions of their physiognomy and functioning (Baldassini et al. 2012). The Andean high-altitude grasslands have been exposed to human activity for millennia (White & Maldonado 1991), but anthropogenic pressures have significantly increased over the last decades (Luteyn 1992, in Ramsay & Oxley 1996), mainly from grazing and burning (Bustamante & Bittencourt 2007). Apart from the direct impact on the ecosystem diversity and degradation, grazing and burning have also direct implications for carbon stocks. In an overview of twelve different Andean grassland biomass studies...
(including puna/páramo) provided by Hofstede et al. (1995), above-ground biomass estimations ranged from 205 g m$^{-2}$ to 2829–3553 g m$^{-2}$, depending on the degree of grazing or burning and pools sampled, which translates into 1.0 to 14.1–17.8 Mg C ha$^{-1}$. Ramsay & Oxley (2001) estimated standing biomass of 794 g m$^{-2}$ and 837 g m$^{-2}$ at two Ecuadorian páramo grassland sites, which translates to 4.0–4.2 Mg C ha$^{-1}$, and Gibbon et al. (2010) estimated 6.5 Mg C ha$^{-1}$ in their grazed Peruvian puna sites. Although the different methodologies used in the various studies make comparisons difficult, it is recognized that high-altitude grasslands can play an important role in climate change mitigation and may be a suitable area for carbon compensation mechanisms because of their extensive distribution and ability to sequester carbon (Conant 2010).

Quantification of above-ground biomass and above-ground productivity can be achieved by three broad methods: (i) through intensive biomass destructive sampling; (ii) through allometric equations (Brown 1997; Navar et al. 2004; Chave et al. 2005; Feldspau get al. 2011), and (iii) through remote sensing techniques (e.g. Saatchi et al. 2007; Asner 2009). Destructive methods may be a feasible method in open grasslands, but the remoteness of some areas and limited resource availability for transportation and processing the samples often make them very costly and logistically challenging. Remote sensing methods require targeted field-based measurements for calibration and validation. Allometric equations require an initial extensive destructive biomass sampling, but they can later be used as a consistent and non-destructive method for estimating above-ground biomass and productivity. Currently there are reliable allometric equations for different types of tropical forests (e.g. Chave et al. 2005; Feldspau get al. 2011). However, few equations have been developed for non-forest tropical and subtropical ecosystems (Johnson et al. 1998; Navar et al. 2004). One of the first steps towards an integrative assessment of above-ground productivity in non-forest tropical and subtropical ecosystems would be the development of reliable allometric equations for major ecosystems, which could be adopted as a systematic method for measuring, reporting and verifying carbon compensation schemes. With this regard, multispecies models allow for wider applicability than species-specific models, but their suitability is easily more limited because of the inherent variability introduced in the models when considering different species together.

The tropical montane cloud forest – puna transition zone is experiencing increased deforestation and degradation from fire and grazing pressure (Bustamante & Bittencourt 2007), but comprehensive studies on the carbon stocks and productivity of these grasslands and the impacts of disturbance on them are scarce. This study focuses on the puna grasslands of the south-eastern Andes of Peru, which are under increasing pressure from fire (Oliveras et al. 2013) and grazing. The study was conducted on relatively undisturbed puna grassland in the buffer area of Manu National Park: the area had not been burned in 6 years and there was no grazing activity. The aims of this study were to (1) estimate above-ground biomass and biomass carbon content in a puna ecosystem, (2) develop allometric equations for dominant grasses and (3) explore the suitability of allometric equations as a reliable method for estimating above-ground productivity in tropical montane tussock grasslands.

METHODS

Study site

The study was carried out in the south-eastern Peruvian Andes, at approximately 3300 m a.s.l. in the south-western buffer area of Manu National Park (13°18′S, 71°58′W) (Fig. 1). At this altitude, a typical puna vegetation type is observed, dominated mainly by tussock-forming grasses. Dominant species include *Calamagrostis* spp., and *Festuca dolichophylla* J. Presl. (Gibbon et al. 2010). Average annual rainfall ranges from 1900 to 2500 mm, with a wet season spanning from October to April (Gibbon et al. 2010). Mean annual temperature is approximately 11°C at 3600 m a.s.l. (Gibbon et al. 2010). Puna soils are largely composed of an organic-rich A-layer, stony B/C-layers, and no Oh-layer (Gibbon et al. 2010; Zimmermann et al. 2010).

Data collection

We established eight transects of 30 m length and 2 m width in a puna area of the Wayqecha Biological Reserve in July 2010. Each transect consisted of eight 4 m2 plots evenly distributed along the transect. At each transect, eight plots of 2×2 m were delineated, each separated by two metres. At each plot, we identified all plants to the genus or species level. For each tussock we measured the longest basal diameter (d_1), the basal diameter perpendicular to d_1 (d_2), the height as encountered in the field (h), the maximum height (stretched by hand; h_{max}), the longest tussock crown diameter (d_{ct}) and the diameter perpendicular to d_{ct} (d_{ct}). The crown- and basal diameters were used to estimate elliptical crown areas (CA) and basal areas (BA), following Johnson et al. (1998). The highest vegetative tiller was defined as plant height, excluding reproductive tillers that may surpass vegetative tillers (whose biomass is negligible, Guévara et al. 2002). All plants were hand clipped at ground level. Following Ramsay and Oxley (2001), fixed dead material (i.e. dead leaves still attached to the tussocks, Waren et al. 1994) was harvested, but ground litter was not. Most dead material remained attached to the tussocks and the ground litter content was little compared with the attached dead material. All plants were fresh weighed, bagged and subsequently oven dried at 70°C to...
constant weight, and weighed to the nearest 0.1 g. Dried vegetative biomass was assumed to contain 50% carbon, following the same criteria as previous studies in the same area (Gibbon et al. 2010).

Regression models

We developed species-specific allometric equations for the four dominant tussock grasses: *Calamagrostis* spp. \((n = 1334)\), *Festuca dolichophylla* \((n = 223)\), *Scirpus rigidus* \((n = 638)\) and *Juncus balticus* \((n = 177)\). These have growth forms (i.e. tussocks) that make them suitable for developing allometric equations and constituted the majority (84.9%) of the total biomass at the study site. In addition, multispecies equations were developed, combining data from the four aforementioned species. The remaining species were rosette or cushion plants, and were therefore excluded from the analysis.

We tested 12 models (Table 1) based on linear relationships \((y = ax + b)\) or \(Y = ax_1 + bx_2 + cx_3\) for multiple explanatory variables) and non-linear regressions according to the power function \((y = ax^n\) or \(y = ax^b \cdot x^n\) for multiple explanatory variables). One of the most common approaches to fit power-law relationships is by log-transforming both sides of the equation, yielding to a linear relationship, \(\log(y) = \log(a) + b \cdot \log(y)\). However, stochasticity manifests differently in power-law and in log-transformed models (Gingerich 2000; Kerkhoff & Enquist 2009; Xiao et al. 2011). We therefore explored the error structure and distribution of power-law models of untransformed data (non-linear relationships, NLR) and log-transformed linear regressions (LR) following Xiao et al. (2011) using the *smart*

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(AGB = a + b(BA))</td>
</tr>
<tr>
<td>II</td>
<td>(AGB = a(BA)^b)</td>
</tr>
<tr>
<td>III</td>
<td>(AGB = a + b(h_{max}))</td>
</tr>
<tr>
<td>IV</td>
<td>(AGB = a h_{max}^b)</td>
</tr>
<tr>
<td>V</td>
<td>(AGB = a + b(CA))</td>
</tr>
<tr>
<td>VI</td>
<td>(AGB = a (CA)^b)</td>
</tr>
<tr>
<td>VII</td>
<td>(AGB = a + b(CA) + c(h_{max}))</td>
</tr>
<tr>
<td>VIII</td>
<td>(AGB = a(CA)^b \cdot (h_{max})^c)</td>
</tr>
<tr>
<td>IX</td>
<td>(AGB = a + b(BA) + c(CA))</td>
</tr>
<tr>
<td>X</td>
<td>(AGB = a(BA)^b \cdot (CA)^c)</td>
</tr>
<tr>
<td>XI</td>
<td>(AGB = a + b(BA) + c(h_{max}) + d(CA))</td>
</tr>
<tr>
<td>XII</td>
<td>(AGB = a(BA)^b \cdot (h_{max})^c \cdot (CA)^d)</td>
</tr>
</tbody>
</table>

\(BA = \text{basal area (cm}^2)\), \(CA = \text{canopy area (cm}^2)\), \(h_{max} = \text{plant maximum height (cm)}\).
library of R (Warton et al. 2006). Data were not corrected for logarithmic bias (Baskerville 1972). The response variable was plant above-ground biomass (g), and explanatory variables were basal area (cm²), crown area (cm²), and maximum height (cm). We chose maximum height because it was a better predictor than height encountered in the field in all models (data not shown).

The best statistical model was selected by comparing the squared coefficient of regression (r^2), the residual standard error (RSE) of residuals, and the Akaike’s information criterion (AIC) for all models. While higher values of r^2 show better fit, least squares approximation minimizes RSE. Similarly, the model with the lowest AIC indicates the best model, that is, the one which offers the best fit whilst allowing for the number of parameters (Akaike 1974).

Models were developed and calibrated with 80% of the data (Calamagrostitis spp., $n = 1085$; Festuca dolichophylla, $n = 183$; Scirpus rigidus, $n = 508$; and Juncus balticus, $n = 140$). The remaining 20% of data were used to validate the models by applying prediction using the best fitted models (Calamagrostitis spp., $n = 249$; Festuca dolichophylla, $n = 40$; Scirpus rigidus, $n = 130$; and Juncus balticus, $n = 37$). All statistical analyses were carried out using the R software 2.13.2 (R Development Core Team 2012).

RESULTS

Above-ground biomass and carbon stock

The above-ground vegetation was estimated to contain on average 6.7 ± 0.2 (standard error) Mg ha⁻¹-dry biomass, which translates into 3.35 ± 0.1 Mg C ha⁻¹. Calamagrostitis spp., Scirpus rigidus, Festuca dolichophylla, and Juncus balticus contributed 68.4%, 7.8%, 7.7%, and 1.0% to the total biomass, respectively. The four focal species thus comprise 84.9% of the total above-ground biomass. The sites had a high species richness, with a total number of 21 herbaceous species, 12 shrub species (being Senecio rhizomatosus, and Ageratina cuzcoensis the most common) and 5 fern species (belonging to Licopodium and Blecnum genera).

Allometric equations

Power-law relationships (models II, IV, VI, VIII, X and XII, Table 1) were explored by applying the logarithmic transformation of data and fitting a linear relationship, as the analysis of the error distributions supported the assumption of multiplicative log-normal error better than non-linear regression error (Appendix S1). Linear regressions did not show good fits for any species-specific (Appendices S2–S5) or multispecies models (Table 2). Models improved when the power function was used, either with a single or with multiple estimators (Table 2 and Appendices S2–S5). The analysis showed that models based on basal area and crown area were good estimators of plant above-ground biomass in both species-specific (Appendices S2–S5) and multispecies regressions (Table 2), but adding maximum height to the models always improved them. However, maximum height itself was a poor predictor of above-ground biomass.

The power-law relationship based on basal area and crown area (model X) and the power-law relationship based on basal area, maximum height and crown area (model XII), gave the best fits for all species and for the multispecies analysis (Table 2, Appendices S2–S5) and we therefore tested the consistency of these models by comparing 20% of the measured above-ground biomass data (that had been not used to derive

<table>
<thead>
<tr>
<th>Regression</th>
<th>Coefficient</th>
<th>r^2</th>
<th>RSE</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-7.518</td>
<td>0.011</td>
<td>0.708</td>
<td>65.87</td>
</tr>
<tr>
<td>II</td>
<td>0.061</td>
<td>0.756</td>
<td>0.734</td>
<td>0.334</td>
</tr>
<tr>
<td>III</td>
<td>-105.9</td>
<td>3.000</td>
<td>0.249</td>
<td>105.6</td>
</tr>
<tr>
<td>IV</td>
<td>-3.045</td>
<td>2.554</td>
<td>0.517</td>
<td>0.452</td>
</tr>
<tr>
<td>V</td>
<td>-43.94</td>
<td>0.082</td>
<td>0.678</td>
<td>69.16</td>
</tr>
<tr>
<td>VI</td>
<td>-2.532</td>
<td>1.316</td>
<td>0.686</td>
<td>0.364</td>
</tr>
<tr>
<td>VII</td>
<td>-38.29</td>
<td>0.084</td>
<td>-0.132</td>
<td>0.678</td>
</tr>
<tr>
<td>VIII</td>
<td>-3.245</td>
<td>1.021</td>
<td>0.921</td>
<td>0.718</td>
</tr>
<tr>
<td>IX</td>
<td>-35.51</td>
<td>0.007</td>
<td>0.043</td>
<td>0.783</td>
</tr>
<tr>
<td>X</td>
<td>5.5e-3</td>
<td>0.478</td>
<td>0.675</td>
<td>0.817</td>
</tr>
<tr>
<td>XI</td>
<td>-29.62</td>
<td>0.006</td>
<td>-0.138</td>
<td>0.045</td>
</tr>
<tr>
<td>XII</td>
<td>1.0e-3</td>
<td>0.480</td>
<td>0.935</td>
<td>0.373</td>
</tr>
</tbody>
</table>

The best-fit parameters are reported for each model, squared coefficient of regression (r^2), residual standard error (RSE), AIC = Akaike’s Information Criterion, degrees of freedom = 1956.
the models) with the estimated above-ground biomass by the models. Model XII gave a slightly better fit than model X for all species, probably because of the inclusion of maximum height (Fig. 2, Appendices S6, S7).

The multispecies analysis confirmed models X and XII as the best models (Table 2), and the validation identified model XII as the best one for the multispecies equation (Fig. 2). Comparing this analysis to the species-specific models, the multispecies models X and XII (Table 2) had higher regression coefficients and higher RSE and AIC than models X and XII for *Scirpus rigidus* (Model X: $r^2 = 0.806$, RSE = 0.222, AIC = −82.1; Model XII: $r^2 = 0.842$, RSE = 0.200, AIC = −186, Appendix S3), *Festuca dolichophylla* (Model X: $r^2 = 0.784$, RSE = 0.234, AIC = −7.4; Model XII: $r^2 = 0.816$, RSE = 0.218, AIC = −33, Appendix S4) and *Juncus balticus* (Model X: $r^2 = 0.766$, RSE = 0.242, AIC = −4.57; Model XII: $r^2 = 0.778$, RSE = 0.238, AIC = 0.70, Appendix S5). Models X and XII for *Calamagrostis* spp. had a higher coefficient of regression and lower RSE and AIC (Model X: $r^2 = 0.841$, RSE = 0.246, AIC = 37.8; AGB predicted (g) AGB observed (g) 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 Model X, multispecies $y = (1.12 \pm 0.03)x \pm (0.97 \pm 0.02)$ $r^2 = 0.815$ RSS = 0.274 Model XII, multispecies $y = (1.13 \pm 0.02)x \pm (0.97 \pm 0.01)$ $r^2 = 0.857$ RSS = 0.241 Fig. 2. Multispecies regressions between predicted above-ground biomass (AGB predicted) with Models X and XII and the above-ground biomass collected in the field (AGB observed). Each cross corresponds to an individual tussock. Coefficient values are expressed with the standard error (± SE). The black line corresponds to the model regression, and the dashed line corresponds to the 1:1. RSS corresponded to residual standard error.

doi:10.1111/aec.12098 © 2013 The Authors
Austral Ecology © 2013 Ecological Society of Australia
3.35 Mg C ha\(^{-1}\). The above-ground vegetation was estimated to contain 3.35 Mg C ha\(^{-1}\), being consistent with validation data (Table 2), being consistent with validation data (Fig. 2, Appendices S6, S7).

DISCUSSION

The above-ground vegetation was estimated to contain 3.35 Mg C ha\(^{-1}\). This value is similar to results from Ecuadorian páramo grasslands, where carbon densities of 4.0 and 4.2 Mg C ha\(^{-1}\) were found at 3750 and 4000 m a.s.l., respectively (Ramsay & Oxley 2001). However, our results contrast significantly with Gibbon et al. (2010) who estimated above-ground carbon density at 6.5 Mg C ha\(^{-1}\) for their puna sites. This difference may be explained by the fact that Gibbon et al. (2010) also quantified the contribution of litter and moss to the carbon pool. The litter contribution in the study area was, however, negligible because most dead material remained attached to the tussock (up to 70%, Hofstede et al. 1995, Appendix S8).

Several other biomass studies have been carried out in a selection of high-altitude tropical and temperate grasslands (Hofstede et al. 1995), but differences in sampling techniques make comparisons difficult. More studies with a standardized methodology should be conducted in order to enhance the capability of cross-site comparisons, which will ultimately lead to a better understanding of the spatial distribution of carbon content in high altitude tropical grassland ecosystems. Another source of variation among studies is seasonality and time of biomass sampling. In the current study, we included live and dead above-ground biomass to avoid any seasonal effects, although seasonality in the study area is almost non-existent, because radiation and temperature remain fairly constant throughout the year and relative humidity is still above 85% in the driest months (July–August, Girardin et al. 2013).

The current study only reported for above-ground carbon stocks because the goal of the study was to provide estimation of the above-ground biomass as well as sound allometric equations that allow for non-destructive estimations of above-ground biomass. The contribution of below-ground biomass is thought to be very important in open high-altitude grasslands, with similar carbon stocks above-ground and below-ground (Oliveras, unpubl. data, 2012).

Almost 85% of the vegetation was composed of four tussock grassland species, of which *Calamagrostis* spp. accounted for most of the biomass. However, 38 different species of grasses, shrubs and ferns were identified, showing the high diversity of these high-altitude grasslands, as has also been found in other studies in puna and páramo (Luteyn 1999).

This study shows that basal area, maximum height and crown area provide a reliable basis for above-ground biomass estimation in tussock grasslands, using allometric equations. Basal area and crown area were the most influential predictors in our models, but adding maximum height always improved the fit of the models. Other studies in tussock grasslands (Andariese & Covington 1986; Johnson et al. 1998; Nafus et al. 2009) have also found basal area to be the main explanatory variable. However, results differ with regards to inclusion of other variables. Johnson et al. (1998), Andariese and Covington (1986) and Nafus et al. (2009) reported small or no improvement when height was added to their models. Guevara et al. (2002) reported that adding height improved the model for some species investigated. Nevertheless, equations only based on maximum height were not good predictors of above-ground biomass, nor were equations based on crown area. Basal area was shown to be the main determinant of goodness of fit. This parameter may be time consuming to measure in field, but is still a useful tool to allow for a relatively fast assessment of above-ground biomass, especially in such remote ecosystems.

The *Calamagrostis* spp. allometric equations gave better fits than the multispecies model, but the other species-specific equations had similar estimation results to the multispecies model. Therefore, the equations developed for *Calamagrostis* spp. based on BA and CA (models X and XII) would be the most appropriate in grassland communities where *Calamagrostis* spp. is the dominant tussock grass. However, for species-rich tussock grassland communities, the multispecies models based on basal area and crown area (models X and XII) would give a more solid prediction of above-ground biomass. Nafus et al. (2009) also developed multispecies grassland equations in a study conducted in Arizona. Independent of the variables included, the successful combination of different species into one model may have important implications for future estimates of above-ground carbon stocks in tussock grasslands using allometric equations, as it eliminates the need of species identification and destructive sampling. However, it must be underlined that multispecies models are only an advantage in general above-ground biomass, productivity and carbon stock measurements. In ecological studies, it would be of interest to know the species composition of the investigated area, especially in such highly diverse ecosystems. It is also important to note that, although these allometrics may be applicable in most tropical Andean grasslands with similar species composition (thus dominated by *Calamagrostis* sp., *Juncus* sp., *Scirpus* sp. and *Festuca* sp. tussocks), validation studies for other areas would be very valuable to test its wider applicability. This is especially important for areas with different environmental factors or different species composition.
The current study provides a reliable method for non-destructive biomass and productivity estimation in high-altitude tussock grasslands. Most allometric equations have been developed for tropical forests, but grasslands can also store large amounts of carbon and have as much productivity as forest ecosystems (Scurlock & Hall 1998). The applicability of these results may be useful in remote and often challenging puna grasslands of the Tropical Andes, where destructive sampling can be of limited applicability due to logistical constraints. These equations can be also applicable to measure the productivity of grassland systems and for establishing reference levels before the adoption of carbon compensation mechanisms or grassland management policies, as well as for measuring the impact of land use changes in Andean ecosystems.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the Department of Ecology and Natural Resource Management at the Norwegian University of Life Sciences, the Norwegian State Educational Loan Fund and Andreas and K. Ludvig Endresens Legat for funding the project. We would also like to thank Guissela Romani, Efrain Choque, Sandra Almeyda, Jose Kala, Jose Antonio and Walter Huaraca Huasco for assistance with the fieldwork. The fieldwork was conducted with the generous assistance from ACCA (Asociación para la Conservación de la Cuenca Amazonítica).

REFERENCES

Maniatis D. & Mollicone D. (2010) Options for sampling and stratification for national forest inventories to implement REDD+ under the UNFCCC. Carbon Balance Manage. 5, art 9, 14.

Oliveras I., Malhi Y., Salinas N. et al. (2013) Changes in forest structure and composition after fire in tropical montane

doi:10.1111/aec.12098 © 2013 The Authors

Austral Ecology © 2013 Ecological Society of Australia
cloud forests near the Andean treeline. *Plant Ecol. Div.*

Phillips O. L., Malhi Y., Higuchi N. *et al.* (1998) Changes in
the carbon balance of tropical forests: evidence from long-term

R Development Core Team (2012) *R: A Language and Environ-

Ramsay P. M. & Oxley E. R. B. (1996) Fire temperatures and

aboveground net primary productivity in Andean grasslands

Saatchi S., Harris N. L., Brown S. *et al.* (2011) Benchmark map
of forest carbon stocks in tropical regions across three

net primary productivity from grassland biomass dynamics

Saatchi S., Houghton R. A., Dos Santos Alvalá R. C., Soares
biomass in the Amazon basin. *Global Change Biol.* **13**, 816–
37.

net primary productivity from grassland biomass dynamics

UNFCCC (United Nations Framework Convention on Climate
Change) (2010) Outcome of the work of the Ad Hoc
Working Group on Long-term Cooperative Action under
the Convention: policy approaches and positive incentives
on issues relating to reducing emissions from deforestation
and forest degradation in developing countries; and the
role of conservation, sustainable management of forests
and enhancement of forest carbon stocks in developing
countries. UNFCCC COP 16, Cancun. [Cited 23 July
2013.] Available from URL: http://unfccc.int/resource/docs/
2010/cop16/eng/07a01.pdf#page=2

vegetation change in relation to cattle grazing in subalpine
grassland and heathland on the Bogong High Alps: an

of natural resources in the Andes of southern Ecuador. *Mt. Res.

Zimmermann M., Meir P., Silman M. R. *et al.* (2010) No differ-
ences in soil carbon stocks across the tree line in the

SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article at the publisher’s
web-site:

Appendix S1. Akaike’s Information Criterion coeffi-
cients on untransformed data.

Appendix S2. Regression models for *Calamagrostis* sp.

Appendix S3. Regression models for *Scirpus rigidus*.

Appendix S4. Regression models for *Festuca dolichophylla*.

Appendix S5. Regression models for *Juncus balticus*.

Appendix S6. Species-specific regressions between
predicted above-ground biomass with model X and
the above-ground biomass collected in the field.

Appendix S7. Species-specific regressions between
predicted above-ground biomass with Model XII and
the above-ground biomass collected in the field.

Appendix S8. Photo of one of the Wayqecha
transects.