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Conversion of tropical forests to oil palm plantations in Malaysia and Indonesia has resulted in large-scale
environmental degradation, loss of biodiversity and significant carbon emissions. For both countries to
participate in the United Nation’s REDD (Reduced Emission from Deforestation and Degradation) mech-
anism, assessment of forest carbon stocks, including the estimated loss in carbon from conversion to
plantation, is needed. In this study, we use a combination of field and remote sensing data to quantify
both the magnitude and the geographical distribution of carbon stock in forests and timber plantations,
in Sabah, Malaysia, which has been the site of significant expansion of oil palm cultivation over the last
two decades. Forest structure data from 129 ha of research and inventory plots were used at different
spatial scales to discriminate forest biomass across degradation levels. Field data was integrated with
ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar)
imagery to both discriminate oil palm plantation from forest stands, with an accuracy of 97.0%
(j = 0.64) and predict AGB using regression analysis of HV-polarized PALSAR data (R2 = 0.63, p < .001).
Direct estimation of AGB from simple regression models was sensitive to both environmental conditions
and forest structure. Precipitation effect on the backscatter data changed the HV prediction of AGB
significantly (R2 = 0.21, p < .001), and scattering from large leaves of mature palm trees significantly
impeded the use of a single HV-based model for predicting AGB in palm oil plantations. Multi-temporal
SAR data and algorithms based on forest types are suggested to improve the ability of a sensor similar to
ALOS PALSAR for accurately mapping and monitoring forest biomass, now that the ALOS PALSAR sensor is
no longer operational.

� 2011 Elsevier B.V. All rights reserved.
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Southeast Asia. The forests in this region are a large carbon reserve,
having among the highest carbon densities of all undisturbed trop-
ical forests (Slik et al., 2010); however, aggressive timber extrac-
tion over the past several decades has severely decreased this
carbon store (Houghton, 2005). Borneo has suffered among the
highest levels of logging in Southeast Asia with extraction rates
of greater than 100 m3 ha�1 (Collins et al., 1991; Sundberg,
1983), with 80% of its lowlands already degraded by selective log-
ging (Curran and Trigg, 2006). Pressure on these forest reserves
will continue to increase as volumes of readily harvestable timber
dwindle, sometimes resulting in the conversion of these areas to oil
palm plantations. As very little if any unprotected ‘‘primary forest’’
in this region remains and only previously logged areas can be ci-
ted for conversion, the focus of this study has been to compare AGB
of logged and degraded forest with AGB of oil palm plantation.
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Past efforts at estimating the degree of forest loss due to expan-
sion of oil palm plantation, such as that by Koh and Wilcove (2008),
have used data from the United Nations Food and Agriculture’s
(FAO) Forest Resource Assessment (FRA). These data allowed them
to estimate the amount of planted oil palm area replacing natural
forest in Malaysia and Indonesia. However, this analysis was not
able to differentiate the aboveground biomass (AGB) stored in this
forest before clearance and therefore could not estimate the carbon
emissions due to this land conversion. As a result of studies like
these, concerted efforts are underway to improve the mapping of
AGB using remote sensing.

This study focuses on Sabah, Malaysian Borneo, which covers
73,731 km2 or 10% of Borneo’s total area. It is also the Malaysian
state with the largest area of planted oil palm, covering approxi-
mately 17% of the state’s total land area (MPOB, 2008). Under the
Malaysian National Forest Policy 45% of Sabah’s land area is desig-
nated as Permanent Forest Reserve, which are unlikely to be con-
verted to oil palm; although they will continue to be logged.
Berry et al. (2008) predicted that by the end of 2010 all of the
remaining natural forest outside of protected areas will have been
logged at least once. Better AGB estimates could be pivotal for pri-
oritizing areas needing enhanced protection and/or identifying
areas being degraded unsustainably.

1.1. Mapping aboveground biomass

Estimating the carbon implications of this forest degradation
and large-scale conversion is still relatively uncertain considering
the errors in regional carbon stock estimates. While carbon is
stored in both vegetation and soil, 89% of carbon losses are due
to loss of living biomass (Houghton, 2005); therefore, efforts have
been focused on estimating AGB of vegetation at the landscape
scale (Saatchi et al., 2007b). Mapping AGB using remote sensing
has been a significant challenge to researchers, but is extremely
important for future implementation of carbon credit verification
in the Land-use Change and Forestry (LUCF) sector (GOFC-GOLD,
2009).

Mapping AGB in tropical regions can be especially challenging
due to the complex canopy structure as well as predominant cloud
cover. Passive optical data can only sense the canopy in two
dimensions making it unable to sense the sub-canopy structure,
including canopy height (Almeida-Filho et al., 2007; Anaya et al.,
2009; Olander et al., 2008). Therefore, passive optical data has been
considered to have limited use for estimating AGB in comparison
to synthetic aperture radar (SAR) and light detection and ranging
(LiDAR) data, which are sensitive to the forest structure (Drake
et al., 2003; Gibbs et al., 2007; Le Toan et al., 2004; Patenaude
et al., 2005). SAR data has been effective in directly estimating for-
est AGB in African (Mitchard et al., 2009), Latin American (Saatchi
et al., in press) and more recently in Southeast Asian forests,
namely in peatland areas of Kalimantan (Englhart et al., 2011).
Also, efforts have attempted to relate height variables (e.g. canopy
height and lorey’s height) to AGB estimates to be applicable for
techniques able to estimate forest height directly from remote
sensing data (Köhler and Huth, 2010; Saatchi et al., 2011).

1.2. Synthetic aperture radar

SAR data acquisition entails emission of a microwave of discrete
wavelength, 1–150 cm, which interacts with the earth’s surface de-
scribed by a scattering coefficient, r0. This coefficient is a dimen-
sionless value, which is mapped as intensity using a logarithmic
scale in decibels [dB] (Waring et al., 1995). Each pixel of a SAR
image is a combination of several backscattering coefficients,
which can lead to either constructive or deconstructive interfer-
ence creating a speckle effect in an image (Balzter, 2001). Smooth-
ing this speckle through kernel filters or reducing the resolution of
SAR backscatter to 50 or 100 m improves the quality of intensity
information (Le Toan et al., 2004; Saatchi et al., in press). Finally,
more advanced SAR sensors discriminate returning signals by
polarization, providing information on the structure of the back-
scattering surface. With polarimetric SAR, the backscatter signal
from the surface is measured in a combination of horizontal (H),
transmitted or received parallel to the ground surface, and vertical,
(V) transmitted or received perpendicular to the surface,
polarizations.

Before the launch of the Advanced Land-Observing Satellite
(ALOS), it was not considered possible to generate biomass maps
from the radar sensors available (e.g. JERS-1, ERS, etc.). The Japa-
nese Earth Resources Satellite 1 (JERS-1), launched from 1992 to
1998, has been used in conjunction with optical sensors to aid in
deforestation monitoring; however the use of only one polarization
(HH) severely limited its ability to differentiate between distur-
bance types. The longer wavelength of the L-band is particularly
sensitive to the primary, secondary branches and stems of forests,
although it also exhibits saturation to dense forest (Quegan and Le
Toan, 2002). ALOS launched in 2006 with the L-band (wavelength:
�24 cm) synthetic aperture radar sensor, PALSAR, onboard was
hailed as a significant contribution to the field of forest monitoring
(Rosenqvist, 2003), namely for biomass estimation and/or growing
stock volume (Eriksson et al., 2003). Unfortunately, the PALSAR
sensor failed on May 12, 2011; therefore, new imagery will not
be available for future monitoring efforts.

ALOS-PALSAR acquired L-band data in five different modes;
however, this study used fine beam dual polarization (FBD) data
HH and HV. Dual and quad band polarizations increase the sensi-
tivity of the signal in order to overcome saturation for biomass
values greater than 50 Mg ha�1 (Quegan and Le Toan, 2002). Nev-
ertheless, PALSAR FBD may not be an effective dataset for mapping
very biomass-rich forest types due to saturation of the signal
(Gibbs et al., 2007; Magnusson et al., 2008) or its inability to distin-
guish between types of severely degraded forests (Watanbe et al.,
2007).

For this study it was considered necessary to explore the range
of AGB values by forest disturbance type and oil palm age in order
to reliably estimate changes in AGB from forest to oil palm planta-
tion. Also, to map AGB in these two structurally different land-
cover types a reliable means of differentiating their respective
areas was needed. Therefore, the main aims of this paper are: (1)
present mean carbon stock values for different land-cover types
across Sabah (2) investigate the potential for ALOS-PALSAR data
to differentiate oil palm plantation from forest area and (3) assess
generated logarithmic relationships between AGB and SAR back-
scatter for estimating biomass across Sabah.
2. Materials and methods

2.1. Study area

The study sites sampled were located in six forest reserves and
three oil palm plantations across much of eastern, lowland Sabah.
Annual precipitation ranges from 2000 to 3000 mm due to the
influence of two monsoons acting in November–March and a drier
one in June–July, creating relative dry seasons in April–May and
August–September (Marsh and Greer, 1992). Temperatures are
typical for a moist, tropical climate, and in the lowlands rarely go
below 20 �C or above 30 �C, with means of 26.7–27.7 �C. The low-
land forest is dominated by the Dipterocarpaceae family, with over
180 species of this family in Sabah alone (Whitmore, 1984). The
forest area sampled ranged from mixed Dipterocarp forest, both
protected and logged, heath forest (a.k.a. kerangas) and some areas



Fig. 1. Forest reserve types for Sabah, Malaysian Borneo. Depicts location of sampled forest and plantation plots. Black crosses indicate transects, black squares indicate
square forest plots and red squares designate oil palm plantations sampled for this study (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
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of peat swamp forest (see Fig. 1). Ninety-five percent of the study
area was below 600 meters elevation and with slopes less than 18�,
both of which are cut off values for areas suitable for oil palm
cultivation.

The forest reserves sampled were Deramakot, Danum Valley,
Malua, Ulu Segama and the lower Kinabatangan flood plain. Dera-
makot Forest Reserve is a mixed Dipterocarp forest, managed by
the Sabah Forestry Research Centre (FRC), which covers an area
greater than 55,000 with 51,000 ha currently logged under For-
estry Stewardship Council (FSC) guidelines. Danum Valley consists
of 43,800 ha of relatively undisturbed, lowland Dipterocarp forest
managed by Yayasan Sabah. Bordering Danum Valley are the forest
reserves Ulu Segama and Malua, which combined cover 236,825 ha
of logged Dipterocarp forest. Several forest reserves along the low-
er Kinabatangan flood plain were sampled by the FRC and WWF-
Malaysia as part of the Kinabatangan Landscape Conservation Ini-
tiative Project. The whole area was once over 330,000 ha of intact
forest; however, over the last several decades approximately 68%
of this region has been degraded through human activities
(WWF-Malaysia, 2007). Transects for this study were stratified
across mixed Dipterocarp forest, freshwater swamp forest and
peatswamp forest. Timber plantations were sampled from the Sa-
bah Softwoods Sendirian Berhad (SSSB) site, 70 km north of Tawau,
consisting of two species, Acacia mangium and Albizia ferrucania. Oil
palm plantations, Elaeis guineensis, were sampled from Wilmar
International Limited’s (formerly Perlis Plantations Berhad, PPB)
Sapi plantations located near Sandakan.
1 For interpretation of color in Figs. 1 and 6, the reader is referred to the web
version of this article.
2.2. Ground data

Twenty-two hectares of forest mensuration data were collected
between April and November 2008, along 0.5- (20 by 250 m), 1.0-
(20 by 500 m) and 1.5-ha (20 by 750 m) line transects stratified
across logging intensities and years since logging. Data collected
included (i) diameter at breast height (DBH) measurements for
all trees with DBH 10 cm or greater, (ii) height measurements for
a subset of trees and (iii) species of all trees in order to estimate
their wood density. Average wood density values for each species
or genus were compiled from Brown (1997) and the World Agro-
forestry Center’s Wood Density Database (ICRAF, 2008). Three
hectares of line transects in timber plantation were collected as
well as 5 ha of 0.25-ha plots in oil palm plantation, stratified by
years since planting. Demarcations were made every 10 m, in order
to monitor variation along transects. To augment this data set, we
compiled existing datasets of vegetation biomass in the region,
74 ha of similar line transects collected along the Kinabatangan
River (WWF-Malaysia, 2007), 30 square 1-ha plots in logged and
unlogged forest (Berry et al., 2008) and three square 1-ha plots
in primary forest over three different soil types (Banin, 2010). Of-
ten remaining forest areas are located in hilly areas, unsuitable
for agricultural cultivation. This could make forest mensuration
data collection along line transects challenging as well as relating
estimated AGB values to SAR backscatter. Efforts to reduce these
errors will be discussed in the next section.

A number of mensuration variables were generated from these
field data in order to compare with satellite images acquired over
the same time period; however only average height, dominant
height and six different biomass estimates are presented. Analysis
of these variables was performed across a number of plot sizes (0.1,
0.25, 0.5 and 1.0 ha) to assess the importance of scale for correla-
tion with radar backscatter. Fig. 1 depicts the sampling of forestry
data across forest reserve types for Sabah. The black crosses delin-
eate placement of forest inventory transects, black squares indicate
forest plots and red1 squares show the location of oil palm planta-
tion plots.

Table 1 lists the land cover classification and number of hect-
ares of data collected for all plots and transects. The most useful
height variables are those that were able to effectively differentiate
between the unlogged (UNL) and logged forests (L70–L03) as well
as oil palm (OP-I and OP-M) and timber plantations (SSSB-I and
SSSB-M). The disturbance values FRCL, FRCM and FRCH are kept
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separate as no data were provided as to when these areas surveyed
had been disturbed or logged; however soil data and forest type
were provided and are included. Immature plantations were
3 years or younger for oil palm and 2 years or younger for timber.
Mature oil palm plantations measured ranged from 4 to 19 years
after planted and mature timber plantations ranged from 3 to
6 years after planted. The companies managing the oil palm and
timber plantations provided data on age.

Height measurements were not made for all trees due to time
constraints and dense canopies and, for the case of FRC data, were
Table 1
Disturbance values for plot and transect data with number of hec

Forest reserve Disturbance values

Danum Valley and Sepilok UNL
Malua L70

L07
Ulu segama L88
Deramakot L95

L00
L03

Lower kinabatangan floodplain FRCL
L-LMDF
L-PSF
FRCM
M-PSF
FRCH
ESF
SF
L-LSF
R-ESF
R-LSF
H-LMDF
H-PSF

PPB Plantations OP-I
OP-M

Sabah Softwoods SSSB-I
SSSB-M
Total

L = ‘‘low’’ disturbance, M = ‘‘moderate’’ disturbance, and H = ‘‘high
a ‘FRC’ refers to the Forestry Research Centre, the research ar

moderate and high was provided by the FRC to describe the leve

Fig. 2. Relationships between measured height and DBH. Generated logarithmic allome
with size classes from which they were generated.
not collected at all. For sub-sampled heights logarithmic allometric
equations were generated in relation to measured DBH, in order to
calculate height values for the entire transect (see Fig. 2 for an
illustration). Three height equations were generated for (i) trees
of DBH 10–20 cm and (ii) greater than 20 cm and (iii) for all mea-
sured trees per plot combined. The first two equations are consis-
tent with recommendations made by Návar (2009) due to the
inflection point between small- and large-diameter trees in this
relationship. For the datasets without any height measurements
from which to calibrate, equations were generated using all trees
tares sampled.

Description Hectares

Unlogged forest 14.0
Logged forest (�1970) 5.0
Logged forest (2007) 3.0
Logged forest (1988/9) 13.0
Logged forest (1995/6) 2.0
Logged forest (2000/2) 4.0
Logged forest (2003/6) 4.0
FRC lowa 5.1
Lowland Mixed Dipterocarp Forest (MDF)L 3.1
Peat Swamp ForestL 2.0
FRC moderatea 1.6
Peat Swamp ForestM 1.6
FRC higha 66.9
Early Secondary Forest (ESF)-MDF 4.5
Secondary Forest-MDF and limestone 7.5
Late Secondary Forest (LSF)-MDF 13.4
Riparian (ESF) 5.2
Riparian 6.3
Lowland Mixed Dipterocarp ForestH 10.9
Peat Swamp Forest(LSF/ESF)H 19.1
Oil palm (immature) 0.75
Oil palm (mature) 4.25
Timber plantation (immature) 1.0
Timber plantation (mature) 2.0

126.7

’’ disturbance.
m of the Sabah Forestry Department. The designation low,
l of disturbance of their sites.

tric equations from measured height values in the field. Equations are color-coded



Table 2
Biomass variables generated from allometric equations in the literature. D refers to diameter at breast height (in cm), H refers to height (in m) and q refers to wood density
(g cm�2). H1 and H2 refer to the equations derived for height estimates described above. Finally, AGB estimates are in kg.

Biomass value Derived for Equations References

Biomass A Moist forest q = 0.5 q� eð�1:499þ2:148�lnðDÞþ0:207�ðlnðDÞÞ2�0:02081ðlnðDÞÞ3Þ Chave et al. (2005)

Biomass B Moist forest q from literature q� eð�1:499þ2:148�lnðDÞþ0:207�ðlnðDÞÞ2�0:02081ðlnðDÞÞ3Þ Chave et al. (2005)

Biomass C Moist forest q from literature 0:0509� q� ðD2Þ � H1 Chave et al. (2005)

Biomass D Moist forest q from literature 0:0509� q� ðD2Þ � H2 Chave et al. (2005)

Biomass E Asian moist forest 42:69� 12:8� ðDÞ þ 1:242ðD2Þ Brown (1997)

Biomass F Asian moist forest eð�2:134þ2:530�lnðDÞÞ Brown (1997)
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measured in logged forest to create a ‘‘generic’’ allometric equation
for disturbed lowland forest. This practice did add another level of
error to the biomass estimates in these plots that is discussed later.
These height values were then used over the transect, sub-transect
or plot level to calculate the relevant average height and dominant
height values (the average height of trees in the top 20% of DBH
values).

Estimates of biomass values were calculated using several allo-
metric equations. This was to compare the variety of available
equations in the literature relevant to this region, which provided
a significant range in biomass estimates and indicate a need for
consensus in the research community regarding which equations
should be used for subsequent AGB studies. Table 2 provides a list
of the equations used, what dataset they were derived from and
the references from which they were taken. Biomass equations
A–D were developed for pan-tropical moist forest (predominantly
South American and Asian forest; with no data from Africa) (Chave
et al., 2005). Equations A and B only use wood density and DBH
data. Equation A applies a plot mean wood density of 0.5 g cm�3,
while equation B uses the specific wood density value found in
the literature for tropical species (average value), genus or family
(depending on the ability to identify to species in the field or avail-
ability of species-specific or genus-specific wood densities). Equa-
tions C and D include height estimates, which reduce errors in
above ground biomass (AGB) estimates from 19.5% to 12.5% (Chave
et al., 2005). Finally, biomass equations E and F were derived from
170 destructively sampled trees in moist tropical forests in Asia by
Brown (1997).

Biomass equations used for oil palm estimates were taken from
Henson and Chang (2003) and Corley and Tinker (2003), which are
listed in Table A.1 (in the Appendix). The biomass equation for Cor-
ley and Tinker was used with data collected in the field, while Hen-
son’s equation assumes an ‘‘average oil palm’’ plantation of
approximately 128–140 palms ha�1 (the range in values is due to
palm mortality as the canopy closes), depending on years since
planting. Some subsequent studies have found Corley and Tinker’s
equations underestimate oil palm biomass by 10% (Corley, pers
comm.); while this was taken into consideration for this study it
was not deemed a significant source of error.
2.3. ALOS-PALSAR data

Eight scenes of ALOS PALSAR FBD imagery, acquired in Septem-
ber/October 2008, were used for this study. The level-1.5 acquired
images were processed to r0 (power) values, 30-m resolution and
terrain corrected using the Alaska Satellite Facility’s (ASF) Map-
ready software and a 90-m Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) (Jarvis et al., 2006). Within
the Mapready software, power values were calculated from raw
digital numbers (DNs) using Eq. (1) from Shimada et al. (2009):

r0 ¼ 10� log10ðDN2Þ � 83 ð1Þ

The images were then ortho-rectified to Universal Transverse
Mercator (UTM) projection using Landsat ETM+ imagery, with a
root mean square error (RSME) of <0.65 Landsat pixels (30 m). Fi-
nally, a three-pixel, enhanced Lee filter was applied to reduce
speckle in the images (Lee, 1980). For maximum likelihood classi-
fication (MLC) analysis a three-band image was analyzed, which
consisted of bands HH, HV and a ratio of HV/HH. The ratio was
used in order to reduce topographic effects, which have significant
impacts on SAR backscatter. This is based on the principle from
optical data that each band interacts with topographic elements
similarly and that by taking the ratio of the two bands the interfer-
ence due to these undulations can be minimized. For the final
biomass map the images used were resampled to 100-m (1-ha)
resolution to match the scale of the derived regression
relationship.

SAR data acquired on different dates are also impacted by
changes of surface moisture due to precipitation (Mitchard et al.,
2009). The presence or absence of precipitation was established
using the Advanced Microwave Scanning Radiometer – Earth
Observing System (AMSR-E) rainfall dataset (Adler et al., 2007).
As this imagery had a resolution of 5 km, pixels were extracted
for entire forest reserves or sampled areas (see Fig. A1). AMSR-E
images were acquired for each date of ALOS-PALSAR imagery.
Unfortunately there was no AMSR-E coverage of our study site
for September 9, 2008; therefore, meteorological data was re-
quested for the Danum Valley Conservation Area (DVCA) revealing
a significant rain event of 32 mm (Walsh, 2009).
3. Results

3.1. Ground data

3.1.1. Differentiation of disturbance levels by height estimates
Due to the range of plot sizes available for analysis, plot-level

mensuration variables were plotted as histograms to assess their
changes in distribution with increasing plot size (see Fig. A2).
The evolution of average height values across plot size were illus-
trative, showing reduced variation with increasing plot size across
disturbance levels indicating it was not an effective means of dis-
tinguishing between them. Dominant height showed a better dis-
tribution across plot sizes (not pictured), indicating it might be a
better variable for differentiation of disturbance level.

3.1.2. Estimation of aboveground biomass
Greater attention has been paid to the propagation of error for

above ground biomass (AGB) estimates via the choice of allometric
equation used. Measurement errors for diameter, height and wood
specific gravity (i.e. density) may be significant at the tree-level
AGB estimate, but are almost negligible relative to the use of gen-
eralized allometric equations for plot-level estimates (Chave et al.,
2004). After analysis of wood density values, it became evident
that 0.5 g cm�3 was not a reasonable assumption for wood density
in this region (e.g. Chave et al., 2005). Studies in both Borneo and
the Amazon have used values of 0.67 (Chave et al., 2006; Fearnside,
1997; Paoli et al., 2008). We found the mean weighted wood
density across forested plots to be 0.6, which is consistent with



Fig. 3. Evaluation of biomass equations. Equations A–F are compared using per tree calculations of biomass (in Mg) across all DBH values (in cm). (Left) Presents biomass
estimates for logged forest and (right) presents estimates for unlogged forest.
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Ketterings et al. (2001) average wood density across species in
Sumatra.

An evaluation was performed of the six chosen biomass equa-
tions (see Fig. 3) to assess the range in values. The large discrep-
ancy in these estimates becomes more evident for trees with
DBH larger than 80 cm. Equations B–D appear to have the highest
estimates for mature/unlogged forest while equation F are the
highest for logged forest. Using equation A as the median estimate
for biomass, percent differences were calculated for a subset of
equations for both logged and unlogged forest plots (see Table 3).
The inclusion of wood density estimates for equation B yields high-
er biomass estimates for both size classes, while the inclusion of
height values in equation C produces higher estimates for larger
trees particularly in unlogged forest. This range in values seems
to be due to the difference in assumption of height values for
logged-over areas.

Including height estimates for AGB calculations is particularly
important for this region (see Fig. A3 in the Appendix). Plotting
the difference between estimates from equations B and C over
equation B values showed the addition of height measurements
in mature forest added an overall positive bias to biomass esti-
mates, while the opposite was true for logged forest. This finding
has implications for future biomass estimates in this region, as tim-
ber extraction favors the removal of the tallest trees (i.e. members
of the family Dipterocarpaceae), which reach heights greater than
80 m, significantly greater than are found in the Neotropics and
Table 3
Percent difference in per tree biomass estimates from equation A for two different
tree size classes and two different disturbance levels. Negative values indicate lower
estimates and positive values refer to higher estimates.

Disturbance level DBH range Percent difference from Eq. (1)

Eqn B Eqn C Eqn D Eqn F

Logged forest 10–60 cm 0.16 �0.09 �0.09 0.11
>60 cm 0.17 0.02 0.02 0.12

Unlogged forest 10–60 cm 0.24 �0.03 �0.03 0.12
>60 cm 0.13 0.12 0.12 0.15
Africa. Therefore, the equations that included DBH, wood density
and height were assumed to be the most appropriate for subse-
quent analyses, particularly for plots where height had been
measured.
3.1.3. Relationship between AGB and forest structural metrics
Average height was a reasonable predictor of AGB while domi-

nant height was significantly worse (see Fig. A4, in the Appendix);
although, average height variables were less reliable than relation-
ships generated by Köhler and Huth (2010) from canopy height. It
was surprising that dominant height was the worse predictor con-
sidering it was better at differentiating between disturbance levels.
Unsurprisingly, both height variables had higher correlations with
equation C, which includes height measurements. The use of gen-
eralized allometric height equations in areas without in situ height
measurements (i.e. data provided by FRC) made those estimates
less reliable; however, values for equations B and C were used
for comparison during subsequent analyses with SAR backscatter
values.

For oil palm plantations, Fig. 4 presents four biomass estimates
for field measurements, (i) Corley and Tinker’s equation using col-
lected field data (ii) Corley and Tinker’s equation increased by 10%,
(iii) Henson’s ideal per hectare biomass estimate including below-
ground biomass and (iv) Henson’s ideal per hectare biomass esti-
mate without belowground biomass. Once the belowground
biomass factor was removed, Henson’s equation was consistent
with field-measured data. The AGB in oil palm plantation actually
decreases after 20 years due to abscission of frond bases as the
palms mature. Corley and Tinker’s equation with un-augmented
biomass estimates was used with subsequent SAR analysis. Fig. 4
also presents the increase of AGB with age for the two timber spe-
cies sampled. A. mangium is used predominantly for pulp and paper
while A. ferrucania is sold as round logs, consistent with the slopes
of their respective regressions.
3.1.4. Biomass estimates for different disturbance levels
Table 4 presents the mean biomass estimates for each

disturbance level and their variability as a percent of the mean,



Fig. 4. Oil palm AGB estimates. (Left) Field measured palm oil biomass estimates compared to Henson’s assumed per hectare estimates relative to age. Plot refers to field
measured values and plot + 10% refers to a 10% increase in the biomass estimate to correct for reported underestimates by Corley (as discussed above). The AGB decreases
after 20 years due to abscission of frond bases as the palms mature. (Right) Field measured timber plantation biomass estimates for Acacia mangium and Albizia ferrucania.

Table 4
Mean biomass values using equation B across 1 ha plots of each disturbance value, with variability in estimates across plots.

Disturbance values Description Number
of plots

Size of plots [ha] Mean biomass
value [Mg/ha]

Variability across
plots [% of mean]

UNL Unlogged forest 14 1.0 353 14
L70 Logged forest (�1970) 4 1.0 and 1.5 287 14
L88 Logged forest (1988/9) 13 1.0 187 11
L95 Logged forest (1995/6) 2 1.0 299 1
L00 Logged forest (2000/2) 4 1.0 361 14
L03 Logged forest (2003/6) 4 1.0 203 5
L07 Logged forest (2007) 2 1.5 244 29
L-LMDF Lowland mixed Dipterocarp forest (MDF)L 3 1.0 and 2.0 216 22
L-PSF Peat swamp forestL 2 1.5 128 2
M-PSF Peat swamp forestM 1 1.5 66 0
ESF Early secondary forest (ESF)-MDF 3 1.3 and 1.5 130 13
SF Secondary forest-MDF and limestone 6 1.5 and 2.0 114 16
L-LSF Late secondary forest (LSF)-MDF 9 1.5, 2.0 and 5.0 110 15
R-ESF Riparian (ESF) 5 2.0 176 21
R-LSF Riparian (LSF) 4 1.0, 1.5 and 2.0 149 7
H-LMDF Lowland mixed Dipterocarp forestH 7 1.5 and 2.0 128 2
H-PSF Peat swamp forest (LSF/ESF)H 14 1.0, 1.5 and 2.0 104 16
OP-I Oil palm (immature) 3 0.25 2.4 19
OP-M Oil palm (mature) 17 0.25 52 15
SSSB-I Timber plantation (immature) 2 0.5 15 12
SSSB-M Timber plantation (mature) 4 0.5 116 34

L = ‘‘low’’ disturbance, M = ‘‘moderate’’ disturbance and H = ‘‘high’’ disturbance.
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calculated from equation B for 1.0 ha estimates. The key values to
note are the significant differences between immature and mature
oil palm plantations with all forest covers, except for immature
timber plantation. While the maximum AGB value for oil palm
plantations may approach 100 Mg ha�1, taking the average value
over the life of the plantations reduces this value significantly, by
50% in the case of this study or 25% (�74 Mg ha�1) using a general-
ized relationship like Henson’s. All other forest AGB estimates
exhibit variability ranging from 5% to 21% of mean values, although
when arranged in degree of disturbance they show a clear decreas-
ing trend in AGB from unlogged to severely degraded forest (see
Fig. 5). There is a clear division between the severely degraded for-
est areas measured by the FRC compared to the commercial forest
reserves sampled for this study (all logged plots with years). The
former rarely reach above 150 Mg ha�1, the highest AGB values
from this dataset being in low disturbance, lowland mixed diptero-
carp forest. While most managed and protected forests store well
above 200 Mg ha�1. This discrepancy in AGB values indicates there



Fig. 5. AGB estimates across disturbance levels. Mean plot biomass values and standard error (variability of plot values) for each disturbance level analyzed.

Fig. 6. Map of forest and oil palm. Supervised classification (using MLC) of 3-band
mosaic (HH, HV and HV/HH) for two classes, oil palm and forest pixels
(accuracy = 97.2%, j = 0.65).
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would be a significant difference in AGB change estimates from
conversion of logged forest of different disturbance levels to oil
palm plantation.

3.2. ALOS PALSAR analysis

3.2.1. Discrimination of oil palm and forest pixels
Due to the interaction of L-band SAR data with leaves, branches,

and stems of vegetation, it was assumed PALSAR FBD data would
be able to differentiate between regular spaced oil palms in a plan-
tation and more randomly located trees in forested areas. This was
assessed using the maximum likelihood classifier (MLC) supervised
classification technique and the three band ALOS imagery (HH, HV
and HV/HH), using coordinates for sampled oil palm plantations
and forest areas of >150 Mg ha�1 AGB estimates. Half of the ground
control points were used for training and the second half for test-
ing the MLC layer. Alberga (2007) showed MLC to be a reasonably
reliable classification technique with SAR data, although concerns
have been raised of the textured nature of SAR data being inappro-
priate for clustering algorithms that depend on probability density
functions (Sgrenzaroli et al., 2004; Simard et al., 2000). Fig. 6 shows
classified forest pixels in green and oil palm plantations in red with
an accuracy of 97.0% and a j coefficient of 0.64. Where the j coef-
ficient measures the accuracy of a classification layer accounting
for pixels classified correctly by chance (based on values of ob-
served accuracy and expected accuracy). Table 5 shows the pro-
ducer’s and user’s accuracy of the classification. Attempts to
perform MLC analysis on three classes (intact forest, >250 Mg ha�1,
logged, 150–250 Mg ha�1 and oil palm plantation) were not suc-
cessful with a greatly reduced accuracy of 44.2% and a j coefficient
of 0.09.

3.2.2. Relationships between AGB and PALSAR backscatter
We performed logarithmic regression analysis for each forest

reserve for three variables (dominant height and AGB from equa-
tions B and C) and both FBD bands (see Table A.2). HH-polarized
backscatter proved to be a poor predictor of most of the three vari-
ables; although, occasionally showing significant correlation with
dominant height. HV-polarized backscatter fared better, with its



Table 5
Assessment of classification accuracy for MLC.

Confusion matrix results ALOS (2008)

Oil palm Forest

Producer’s accuracy (%) 100.0 97.0
User’s accuracy (%) 54.0 100.0
Overall accuracy (%) 97.0
Kappa coefficient 0.64
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best relationships with both AGB equations. Unfortunately, domi-
nant height was rarely correlated; indicating it would not be effec-
tive for differentiating between disturbance levels using SAR data.

At this level of analysis, it was unclear whether the inclusion of
height in equation C improved the relationship between AGB and
backscatter, although its significance was greater for all plots ex-
cept timber plantations (SSSB). This analysis does show that low
AGB and the less intact canopy of the Sabah Softwoods timber
plantation allowed for highly significant regression relationships
and revealed the importance of having a range of biomass values
from low to high for effective relationships to be derived. Finally,
while these data are able to differentiate forest and oil palm suc-
cessfully, the use of single HV-based algorithm was not successful
in estimating AGB in oil palm plantations. However, it has been
shown that similar to ground-based allometric equations, forest
type-based algorithms are more effective in estimating biomass
of oil palm plantations (Koay et al., 2009; Nordin et al., 2002).
We did not pursue developing a separate algorithm for oil palm
plantations due to an insufficient number of plots.

Regarding the impact of precipitation, it is evident that all cor-
relations estimated from imagery acquired on September 9, with
documented extremely high precipitation, are severely reduced.
We found that comparing analyses of two images of the Malua
plots showed significant improvement in the drier, September
26, image. Therefore, the most reliable relationship was derived
for forest plots not affected by precipitation (e.g. Malua, Sabah
Softwoods and Deramakot) and acquired on the same day (Sep-
tember 26). The inclusion of Kinabatangan plots significantly
weakened the relationship, which may have been due to poor
Table 6
AGB estimates for each plot used for generating the final predictive relationship from the H
1 and are in Mg ha�1. A mean of these estimates and their standard error as a percent of

Forest
reserve

Plot
number

Disturbance
value

Eqn A
[Mg ha�1]

Eqn B
[Mg ha�1]

Eqn C
[Mg

Malua 1 L70 318 381 305
2 L70 223 262 224
3 L70 202 194 161
4 L70 282 312 213
5 L07 150 172 124
6 L07 264 316 262

Sabah Softwoods 1 SSSB-M 27 31 22
2 SSSB-I 11 13 7
3 SSSB-I 13 16 9
4 SSSB-M 177 222 175
5 SSSB 80 99 82
6 SSSB 97 110 120

Deramakot 1 L95 266 295 206
2 L95 255 303 240
3 L00 270 350 249
4 L00 413 503 422
5 L00 277 328 219
6 L00 214 263 243
7 L03 168 203 184
8 L03 170 199 171
9 L03 149 182 165

10 L03 193 228 230
global positioning system (GPS) correlation with forest plots and/
or a precipitation event not captured by the AMSR-e data. Biomass
estimates for all six allometric regression equations of the 22 plots
used are presented, including the mean of these values and their
standard deviation (see Table 6). These are presented in order to
include the inherent error in these estimates before calculating
root mean square errors (RMSE) for derived equations.
3.2.3. Potential of ALOS-PALSAR to estimate AGB
Using the plots presented in Table 6, logarithmic regressions

were attempted for AGB estimates for equations B and C. RMSE val-
ues were then calculated for both relationships using the same
data points (see Fig. 7). For both measures equation B fared signif-
icantly better, while its R2 value was only marginally improved, the
ability of this regression to predict AGB was superior. Looking at
the comparison of predicted to measured AGB, both relationships
seem to underestimate AGB values. We assessed the saturation
points for both equations and found that equation B saturated at
AGB levels of 88 Mg ha�1 and equation C was at approximately
80 Mg�1. Nevertheless, the RMSE in both relationships was large,
indicating that even without attenuation from precipitation areas
of AGB values greater than 100 Mg ha�1 are not well modeled.

Finally, using the relationship derived for equation C and the
HV-polarized band (see Eq. (2)) an initial attempt at a biomass
map of Sabah (with oil palm areas removed) is presented (see
Fig. 8).

AGB ¼ exp
HV� 0:013196

0:0080139

� �
ð2Þ

The accuracy of this map, R2 = 0.35 and RMSE = 125 Mg ha�1

(derived from non-precipitation affected plots with <450 Mg ha�1

AGB values), was calculated from 37 plots not affected by precipi-
tation. With the saturation of the signal above 88 Mg ha�1, it is
difficult to reliably differentiate between biomass classes of
150–250 Mg ha�1 and greater than 250 Mg ha�1. Also the areas
with the most topography appear to have the lowest biomass val-
ues, which may again be a limitation caused by the sensitivity of
side-looking SAR backscatter to topographically complex terrains
and potentially the use of poor terrain correction approaches in
V band. Estimates were calculated from allometric regression equations listed in Table
the mean are also reported.

ha�1]
Eqn D
[Mg ha�1]

Eqn E
[Mg ha�1]

Eqn F
[Mg ha�1]

Mean
[Mg ha�1]

Std. Dev.
[% of mean]

308 371 345 338 10
225 247 252 239 7
161 223 232 196 15
219 323 316 277 18
123 170 167 151 15
262 310 298 285 9

22 32 35 28 18
7 14 20 12 42
9 15 17 13 31

174 191 224 194 12
82 89 106 90 12

120 107 127 114 10

204 294 298 260 17
227 286 287 266 11
249 300 304 287 14
422 467 453 447 8
264 305 315 285 14
241 238 243 240 7
184 185 193 186 6
171 188 190 181 7
165 165 168 166 7
232 219 208 218 7



Fig. 7. Relationship between SAR backscatter and AGB. Logarithmic regression between HV-backscatter and measured AGB estimates (left column) from equation B (above)
and from equation C (below). The n values refer to the number of hectares used to generate the relationship (plot numbers listed in Table 6). Assessment of predictive power
for each relationship is presented by plotting predicted AGB on the y-axis and measured AGB on the x-axis (right column).

Fig. 8. Biomass map of Sabah. Biomass values were generated only from non-precipitation affected imagery. Oil palm areas were derived from all images and are pictured in
red. Biomass values have been grouped for all high biomass areas (>250 Mg ha�1), moderate biomass areas (two groups from 50 to 250 Mg ha�1) and severely degraded areas
(<50 Mg ha�1) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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PALSAR processing. This map also suffers from a large area of miss-
ing data due to the heavy level of precipitation on September 9.
This analysis would benefit from comparing ground data with
imagery of another date or the use of multiple data to capture
the variability of precipitation effects on the SAR data.
4. Discussion

4.1. Relationship between AGB and forest structural metrics

Average height values did not change significantly across dis-
turbance level, but exhibited a stronger relationship with biomass
compared to dominant height. This was surprising considering that
biomass did change across disturbance levels. It appears that nei-
ther of these height variables would make a reliable estimator of
plot biomass levels, however other studies have had more success
relating height variables to AGB. Saatchi et al. (2011) have found
significant relationships using Lorey’s height. Köhler and Huth
(2010) used a process-based, forest-growth model parameterized
for this region, FORMIND2.0, which shows strong correlation be-
tween canopy height and AGB in modeled primary and logged for-
est as well as permanent sampling plots.
4.2. Estimation of aboveground biomass

In order to effectively map AGB using remote sensing tech-
niques, it is important to first have a reliable biomass value. Con-
sidering the range of biomass estimates that can be calculated
for the same tree, the choice of allometric regression equation
and measured input data are critical. Tropical Asian forests, with
many tall trees are not well described by allometric equations
developed for other tropical regions (e.g. the Americas). The inclu-
sion of height measurements across DBH size classes proved an
important factor for biomass estimation when using equations
A–D, which are generalized for the tropics. Unfortunately for this
study, there were not in situ height measurements for all sampled
plots, thereby reducing the reliability of biomass estimations of
these plots from equation C.

Measured biomass for oil palm plantation plots compared well
with modeled oil palm growth, developed by Henson, especially
when belowground biomass estimates were removed. Modeled
biomass accumulation for each species in timber plantation plots,
although fewer in number, exhibited interesting characteristics.
The A. mangium plots exhibited a higher slope, consistent with
its use as a fast-growing, low-density wood for pulp and paper
manufacture. The A. ferrucania plots, where trees were grown for
board production, showed a slower biomass accumulation func-
tion. These relationships are only based on 3 ha worth of data
and therefore are only useful for illustrative purposes.

Finally, plot size was also an important factor to consider, when
collecting field data and relating it to SAR backscatter. Generally
the 1 ha plots proved to be the most reliable plot size, less prone
to errors due to expansion of mensuration variables from smaller
areas, impact of geolocation errors, and exhibiting the strongest
relationships with PALSAR backscatter. Also, there were advanta-
ges of square plots over line-transects, due to the heterogeneous
nature of forested landscape being monitored and the unavoidable
GPS errors from interference of dense canopies. As a result, averag-
ing of several contiguous pixels for one plot would be preferable to
the same number along a single line. At the same time, the line
transects were considered preferable for a rapid assessment of var-
iation within an area of similar management, which would not
have been possible solely with randomly located 100 by 100 m
plots. Therefore, a combination of these two sampling types could
be implemented for future studies.
4.3. AGB estimates for different disturbance levels

Estimating average biomass values for each disturbance level,
the values in Table 4 exhibit a large variation partially due to the
arbitrary nature of their grouping and also the relative sample size
of each level. The unlogged forest areas do exhibit among the high-
est levels of biomass, although some selectively logged forest plots
do approach similar levels, depending on time since the forest was
logged, intensity of logging and soil characteristics. The latter,
while not considered for this study, has been shown by Slik et al.
(2010) to be an important factor influencing forest characteristics,
such as AGB. There is a large difference in AGB values for most for-
ested areas and oil palm plantations, indicating most forest conver-
sions to oil palm would result in a net carbon loss. The AGB of older
timber plantations does approach that of some of the degraded for-
est areas, making distinction of these areas by biomass values more
difficult. Finally, AGB values for disturbed peat swamp forest are
relatively low, though these sites are known to contain large
belowground reserves of carbon.

4.4. Discrimination of oil palm and forest pixels

This study has shown that the PALSAR FBD-polarized data is
able to differentiate between forest and oil palm plantation reli-
ably, making it a useful sensor for monitoring conversion of forest
to oil palm (Koh et al., 2011); however, as it is no longer opera-
tional, its use is limited until a similar sensor is launched to con-
tinue this monitoring service. The user’s accuracy for oil palm
reveals an overestimation of classified oil palm areas, due to confu-
sion with swamp forest or forest inundated with water. Addition-
ally, the scattering of large leaves of oil palm trees appears to
obscure any information on the palms’ AGB using the same HV
algorithm developed from all forest plots, suggesting the use of dif-
ferent algorithms will be needed for mapping AGB of oil palm plan-
tations (Koay et al., 2009; Nordin et al., 2002). We expect the
increasing interest in ground inventory of oil palm plantations will
provide the necessary data to develop oil palm specific algorithms.
Monitoring of changes in forest cover and expansion of oil palm
plantations has become possible with the use of frequent and
cloud-free ALOS-PALSAR observations over the past few years
(2006–2011) (Koh et al., 2011); however, detecting changes in oil
palm areas prior to ALOS data requires combining data from past
SAR satellites (e.g. JERS) with only HH-polarized data (Rosenqvist,
1996). Also, as conversion of forest to oil palm in Malaysia is slow-
ing; this type of monitoring would be more useful for forest loss in
Indonesia, the current site of oil palm expansion.

4.5. Relationships of AGB and mensuration data with PALSAR
backscatter

As outlined before, height was an important metric to include
for AGB estimation from allometric regression equations; this
remained true for relating estimates to SAR backscatter. Table 6
revisited AGB estimates for all equations generated solely or par-
tially from Asian forest data, showing the range in AGB values pos-
sible for each plot used to generate the final SAR relationship.
Assessment was performed for all of these estimates (results not
shown); however, equation C was consistently the strongest rela-
tionship. Therefore, the logarithmic regression derived between
the HV band and 1 ha biomass estimates for equation C, appears
to be reasonably reliable (R2 = 0.63, p < .001); however the RMSE
values are very high. This would be due partially to the relationship
saturating at 88 Mg ha�1 AGB values making it difficult to map
areas of AGB significantly higher than that, which were the major-
ity of forest plots for this study. This shortfall is consistent with
previous studies that have found limitations in using L-band SAR
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data to map biomass values >100 Mg ha�1 (Mitchard et al., 2009;
Saatchi et al., in press); however, studies that have considered
the impacts of precipitation have increased saturation levels to
well above 150 Mg ha�1 (Englhart et al., 2011). While L-band SAR
data has shown reasonable relationships with biomass, P-band
SAR data has much higher correlations to higher biomass values
(Le Toan et al., 1992; Saatchi et al., 2007a) due to its greater pene-
tration in the vegetation and stronger sensitivity to stem biomass
(Waring et al., 1995). Unfortunately, no current satellite sensors
emit P-band microwaves (Patenaude et al., 2005), although the
European Space Agency (ESA) is in the process of developing one
as part of their BIOMASS Earth Explorer mission.
4.6. Potential of ALOS-PALSAR to estimate AGB

Changes of environmental conditions such as soil and vegeta-
tion moisture can impact SAR backscatter data. In performing the
analysis over the study area, we did not account for these effects
in SAR backscatter and hence did not acquire multiple data over
the same area. We, therefore, expect an unquantifiable part of
the errors in estimating the forest biomass is due to the effect of
precipitation. Any future SAR studies in this region will need to
consider this and acquire data over multiple seasons to reduce
the effect and improve the biomass estimation (Englhart et al.,
2011). As Sabah’s monthly precipitation rarely drops below
100 mm, even during its dry season (Slik et al., 2010), precise mon-
itoring of forest cover change or AGB requires multiple radar acqui-
sitions that are often available with the ALOS-PALSAR and,
hopefully, future sensors.

The saturation of L-band imagery for AGB levels, at best, less
than 150 Mg ha�1 will also greatly reduce the ability to adequately
estimate degradation of forest in this region due to pressures such
as timber extraction; however, estimation of forest AGB loss to oil
palm conversion should be possible for lowland areas of low to
moderate topography, especially where forests have been severely
degraded in advance. Therefore, studies of land cover change and
biomass estimation around oil palm cultivation in this region
would benefit from using ALOS-PALSAR FBD data.

Finally, algorithms developed from polarimetric data and de-
signed to capture the specific structural variations in forests have
potentially more capability to estimate the biomass of different
forest types accurately. These advanced techniques include using
fully polarimetric SAR and texture analysis (Hoekman and
Quiñones, 2002; Saatchi et al., 2007a, 2000), fusion of radar and
optical sensors (Kellndorfer et al., 2010; Moghaddam et al.,
2002), fusion of L-band and X-band radar (Englhart et al., 2011),
or SAR Interferometry techniques (Treuhaft et al., 2004).
5. Conclusion

This study has accomplished two of its three aims, being unable
to map AGB in oil palm plantations. It has also highlighted some of
the limitations to monitoring this region with SAR data, due to the
high AGB values in unlogged and secondary forest as well as the
difficulty in avoiding rain events. Similar studies in savannah for-
ests of Africa have shown much higher degrees of correlation (Mit-
chard et al., 2009), both due to the relatively lower range of AGB
levels and drier state of the vegetation. Unlogged and secondary
forest are difficult to differentiate, owing to the saturation in the
signal; however in terms of conservation value there may be little
difference between the two (Berry et al., 2008), particularly rela-
tive to the comparison to degraded forest and oil palm plantation
(Edwards et al., 2010). It has also highlighted the limitation of
existing allometric equations if height information is not incorpo-
rated; therefore, we suggest future studies in this region should try
to include this factor. For this study it was noteworthy that plot
average height and dominant height were not well correlated with
biomass nor was dominant height correlated with the SAR back-
scatter; therefore, this study would conclude that efforts to model
height from SAR data as a proxy for AGB may be difficult. However,
this is not consistent with recent results using modeled data (Köh-
ler and Huth, 2010), SAR data (Saatchi et al., 2011), and Lidar sen-
sors (Lefsky et al., 2002), which used different plot level height
metrics in AGB estimates.

This analysis has shown the HV-polarized band to be preferable
for forest monitoring, while the HH-polarized band shows higher
sensitivity to environmental variables. The results also imply that
the use of a single algorithm from radar channels is not recom-
mended for biomass estimation of structurally different forest
types. While several plot sizes have been used in other studies, this
analysis demonstrated the benefit of collecting data at the 1 ha
scale, in order to reduce the errors propagated through extrapola-
tion from smaller areas. This is especially a concern for small forest
plots with large trees, not uncommon in dipterocarp-dominated
forest. However, the reliance on data collected at the 1 ha scale will
result in limited ability for SAR data to adequately capture smaller-
scale disturbances. Due to the need to reduce speckle effects of SAR
data (by reducing resolution) and the inherent error in AGB esti-
mates for tropical forests (where allometric regression equations
have not been developed for each species) that are best averaged
out in larger plots (Saatchi et al., in press). However, existing high
resolution airborne and spaceborne SAR sensors (e.g. NASA’s UAV-
SAR, and the German Terra XSAR sensors) with pixels sizes of 1–
5 m will provide new capability to monitor small scale changes
in forest structure and cover. Finally, ALOS-PALSAR has been
shown to have the potential to be an excellent dataset for monitor-
ing oil palm expansion in this region, as oil palm plantations have
such a distinguishable signal from forest. It appears difficult to pro-
vide reliable estimates of biomass loss, through ALOS-PALSAR data
alone, however. Future approaches may need to combine maps
based on another L-band sensor with optical sensor data to im-
prove estimates of changes in AGB.
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