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Abstract: To verify large-scale vegetation parameter measurements the average value of sampling 

points from small-scale data are typically used. However, this method undermines the validity of 

the data due to the difference in scale or an inappropriate number of sampling points. A robust 

universal error assessment method for measuring ground vegetation parameters is therefore 

needed. Herein, we simulated vegetation scenarios and measurements by employing a normal 

distribution function and the Lindbergh-Levi theorem to deduce the characteristics of the error 

distribution. We found that the small- and large-scale error variation was similar among the 

theoretically deduced Leaf Area Index (LAI) measurements. Additionally, LAI was consistently 

normally distributed regardless of which systematic error or accidental error was applied. The 

difference between observed and theoretical errors was highest in the low-density scenario (7.6% at 

<3% interval) and was lowest in the high-density scenario (5.5% at <3% interval) while the average 

ratio between deviation and theoretical error of each scenario was 2.64% (low-density), 2.07% 

(medium-density) and 2.29% (high-density). Further, the relative difference between theoretical 

and empirical error was highest in the high-density scenario (20.0% at <1% interval) and lowest in 

the low-density scenario (14.9% at <1% interval), respectively. These data show the strength of a 

universal error assessment method and we recommend that existing large-scale data of the study 

region are used to build a theoretical error distribution. Such prior work in conjunction with the 

models outlined in this paper could reduce measurement costs and improve the efficiency of 

conducting ground measurements. 
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1. Introduction 

Establishing the connection between genotype and phenotype is currently one of the most 

significant challenges facing modern plant biology [1]. Measurements of different vegetation 

parameters can help us understand genetic characteristics [2]. The utility and importance of 

terrestrial vegetation (including crops) parameters, such as Leaf Area Index (LAI) and Fractional 

Vegetation Cover (FVC), have increased in recent years [3-6]. There are two universally recognised 

methods for measuring these parameters including (a) remote sensing inversions [7-9] and (b) 

ground observations [10, 11]. Remote sensing inversion directly measures vegetation parameters at 

large scales (few meters to hundreds of kilometres). However, due to the technical limitations of 

remote sensing (relatively narrow spatial and temporal resolution, and uncertainty of methodology) 

it is often necessary to cross-validate these data with ground observations [12-14]. Meanwhile, as the 

extensive collection of phenotypic data remains onerous, there is often a focus on traits that are easy 

or inexpensive to measure, while more costly or difficult-to-score phenotypes are studied in only a 

few individuals [15, 16]. This approach is bound to create uncertainty when it comes to generating 

the true value of each vegetation parameter. In contrast to remote sensing, no universal methods for 
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Table 1. Systematic error setting (TS: Types of Systematic error; Se: Systematic error; Sn: Sampling 

size). The system error and the number of sampling points are set artificially for different types of 

systematic errors. In each kind of systematic error, program also simulated accidental error following 

normal distribution. Theoretical errors were calculated by Equation (4) and (5).  

 

 

a 

TS First  Second Third  Fourth  Fifth  Theoretical 

error  

Se Sn Se Sn Se Sn Se Sn Se Sn  

1 0.2 50 - - - - - - - - 0.2 

2 0.2 50 0.4 70 - - - - - - 0.317 

3 0.2 50 0.4 70 0.6 90 - - - - 0.438 

4 0.2 50 0.4 70 0.6 90 0.8 110 - - 0.563 

5 0.2 50 0.4 70 0.6 90 0.8 110 1 130 0.689 
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b 

 

c 

Figure 3. Normal distribution test of measurement results under various systematic errors (a: 

low-density level; b: medium-density level; c: high-density level). The vertical dashed line represents 

the mean value of LAI and the slanted dashed line stands for strictly normal distribution). 
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a                     b                    c 

Figure 4. Measurement error distribution (a: low-density level; b: medium-density level; c: 

high-density level, systematic errors (SEs)). Each line represents the measurement scenarios with 

different types of systematic error (j = 1, 2, 3, 4, 5, as defined in equation (4)), and the abscissa stands 

for different ratio between deviation and theoretical LAI. For example, <1% means measurement 

result error is less than 1%. The y axis is the percent (*100) of sampling points in one error interval to 

total points. The grey area indicates the error of empirical error and the theoretical error (each dashed 

line). Every measurement scenario is simulated 1000 times. 

Error distribution of LAI was calculated using a sequence of normal distribution to represent 

accidental error as well as five types of systematic error with the number of systematic errors 

ascending from 50 to 130 (Table 1). Using equation (5) we found that the measured average LAI was 

consistently normally distributed regardless of which systematic error or accidental error was 

applied (Fig. 3). Additionally, the differences between the observed and theoretical errors were 

highest in the low-density scenario (7.6% difference when error interval was <3%) and lowest in the 

high-density scenario (5.5% difference when error interval was <3%) (Fig. 4). Average ratio between 

deviation and theoretical error of each scenario was 2.64% (low-density), 2.07% (medium-density) 

and 2.29% (high-density). The average percentage of empirical error located in one interval is 

therefore in the region of about 2% of the theoretical value. 

 

a 

 

b 

 

c 
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Figure 5. Ratio between deviation and theoretical error in different intervals with different types of 

systematic error (a: low-density level; b: medium-density level; c: high-density level). 

Further, the relative difference between theoretical and empirical error (when error interval was 

<1%) was highest in the high-density scenario (20.1% with four kinds of systematic error) and lowest 

in the low-density scenario (0.17% with one kind of systematic error). The average deviation from 

the mean between the theoretical and empirical errors in each scenario was 5.9% (low-density), 4.1% 

(medium-density) and 4.9% (high-density). 

4. Discussion 

 
a                                    b 

Figure 6. Sampling result of LAI at three plots (a. distribution of LAI by conducting each sampling 

size for one time; b. distribution of LAI by conducting each sampling quantity 100,000 times; gray 

dashed line is average (true) LAI of subplots for each plot). 

 

In the field, different research plots often have different vegetation conditions (such as mean 

LAI and deviation of LAI in different subplots). However, it is hard to obtain real systematic error 

of measurements in each location. This is because systematic error is not only caused by different 

instruments, they are also influenced by the measuring behaviour of each surveyor. For this reason, 

we used real data to validate error distributions that may have been created during fieldwork using 

different sampling sizes, excluding systematic error.  

The data were gathered from an old secondary forest (BOB-03; 50 years post-logging , 6.69201N, 

-1.307755W) and a Savannah- forest transition plot (KOG-05, 7.30115N, -1.164933W) in Ghana and 

from an old growth forest (NXV-02, -14.7075S, -52.3517W) in Brazil. LAI was measured by taking 

three photos (exposures -1, 0, +1) at 1m height with a fish-eye lens in each sub-plot (25 in each plot). 

The photos were analyzed with the software Hemisfer 2.2 (see the supplementary materials for 

details of the settings). Each plot contains 25 subplots and standard deviation of LAI for each plot is 

0.39 (BOB-03), 0.67 (NXV-02) and 4.87 (KOG-05) respectively.  

We can see in Figure 6 that as sampling quantity increases, the results of measured LAI are 

closer to mean LAI (we assumed it as true value) of the plot. Meanwhile, for the plot with the 

highest deviation of LAI, a higher number of samples are needed in order to reduce the deviation. 

For example, three sampling points in BOB-03 provided a result close to mean value while the 

deviation of 13 sampling points in KOG-05 was still high (about 1). The LAI in BOB-03 converged 

with the mean faster than in NXV-02 and KOG-05. In Figure 6b, the results of measurements in 

BOB-03 is more concentrated around the mean LAI no matter how many sampling points we used. 

This suggests that the sampling quantity of measurement in one research plot to reach specific error 

requirement should be decided by deviation of different subplot rather than average LAI of the 

whole plot. This is particularly important when working with different habitat types as the forest 

plot in BOB-03 which has a more homogenous canopy. 
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