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Variability in modern pollen rain from moist and wet tropical forest
plots in Ghana, West Africa

ADELE C. M. JULIER 1,2, PHILLIP E. JARDINE3, STEPHEN ADU-BREDU4,
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& Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands, 3Institute of Geology and Palaeontology,
University of Münster, Münster, Germany, 4CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana, 5Human Origins
and Palaeoenvironments, Geography, Social Sciences, Oxford Brookes University, Oxford, UK, 6The School of Biosciences,
The University of Nottingham, Nottingham, UK, 7School of Geography and the Environment, Oxford University Centre for
the Environment, University of Oxford, Oxford, UK

Abstract
How pollen moves within and between ecosystems affects factors such as the genetic structure of populations, how resilient
they are to environmental change, and the amount and nature of pollen preserved in the sedimentary record. We set
artificial pollen traps in two 100 m by 100 m vegetation plots, one in a wet evergreen forest, and one in a moist semi-
deciduous forest in Ghana, West Africa. Five traps from each plot were counted annually from 2011 to 2014, to examine
spatial and temporal variation in the pollen rain of the most abundant taxa shared between pollen and vegetation
assemblages. Samples from the wet evergreen plot exhibited high variability within years, with the dominant pollen types
changing between samples, and many pollen taxa being over-represented relative to their parent plant abundance in some
traps whilst being entirely absent from others. The most abundant plant taxa of the wet evergreen plot (Drypetes and
Cynometra) do, however, constitute major components of the pollen rain. There is less variation between samples from the
moist semi-deciduous plot spatially, as it is dominated by Celtis, which typically comprises >70% of the pollen assemblages.
We conclude that pollen rain in these tropical ecosystems is highly heterogeneous, and suggest that pollen assemblages
obtained by trapping are susceptible to small-scale variations in forest structure. Conversely, this may mean that current
recommendations of more than three years of trapping in tropical systems may be too high, and that space could substitute
for time in modern tropical pollen trapping.

Keywords: palynology, pollen, dispersal, Tropics, Ghana

Pollen production and dispersal are crucial to the
maintenance of plant populations, their genetic
diversity, and their ability to adapt and evolve in
response to changing conditions (Ellstrand & Elam
1993). Pollen dispersal in the tropics has, until
recently, been largely under-studied compared to
temperate regions (Giesecke et al. 2010), although
molecular work has been carried out which allows

parentage of individuals to be inferred, thereby
indicating how far their parental pollen travelled
(Dick et al. 2003; Gonzales et al. 2006). How
pollen moves within and between ecosystems is of
particular interest to palaeoecologists, who use pol-
len from sedimentary records to reconstruct past
vegetation and therefore need to know how well
past vegetation is represented in the fossil pollen
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record (Overpeck et al. 1985; Fægri et al. 1989).
Pollen production has been shown to reflect physi-
cal variables such as temperature, precipitation
(Nielsen et al. 2010) and solar irradiance (Hasel-
horst et al. 2017), as well as pollination syndrome
(Bush 1995).
The movement and dispersal of pollen has been

studied using molecular markers to identify off-
spring of individuals (Ellstrand 1992; Austerlitz
et al. 2004; Smouse & Sork 2004; Ward et al.
2005; Gonzales et al. 2006; Dick et al. 2007,
2008). In the tropics, high levels of out-crossing
and pollen dispersal over long distances (up to tens
of kilometres) are observed despite the majority of
tree taxa being entomophilous and therefore pre-
sumed to have relatively limited pollen dispersal
capabilities (Ward et al. 2005). Genetic studies mea-
sure successful pollination events and subsequent
population structure, but do not show how the
bulk of pollen produced by plants moves within
ecosystems, whether driven by air currents, rain, or
gravity (DiLeo et al. 2014). The pollen distribution
curve (the amount of pollen deposited against dis-
tance from source) has been shown to be a negative-
exponential (strongly leptokurtic), meaning that a
large proportion of all pollen produced is deposited
very close to the plant (Miller 2016). Modern pollen
studies in tropical forest also show high levels of
local (within tens of metres of samples) pollen in
traps (Bush & Rivera 1998; Gosling et al. 2005).
The interpretation of the fossil pollen record relies

upon an understanding of how plants in modern
ecosystems produce pollen (Davis 1963; Jackson &

Lyford 1999; Farrell et al. 2016). In temperate
regions, this issue has received much attention,
with modern pollen rain studies having been carried
out extensively for the past century, and the Pollen
Monitoring Programme (Hicks et al. 2001) being
established to standardise collection techniques (for
a thorough review of the history of pollen trapping in
Europe, see Giesecke et al. (2010), and for a meta-
analysis of North American assemblages see Goring
et al. 2013). Pollen assemblages recovered from
artificial traps represent local vegetation (Haselhorst
et al. 2013), and consequently they are not directly
comparable to those recovered from large lakes. The
larger the lake, the higher the proportion of regional
and anemophilous, taxa it is likely to contain (Jans-
sen 1966; Jacobson & Bradshaw 1981), whereas
pollen traps tend to record local signals, meaning
that entomophilous and locally abundant taxa can
be relatively over-represented. Modern pollen stu-
dies can be useful in identifying taxa that, when
identified at lower abundances in the fossil record,
might be indicative of certain ecosystems (e.g. the
Fabaceae [Watrin et al. 2007]), and may also allow
the identification of taxa that are not useful in differ-
entiating between ecosystems, or those that must be
treated with caution, such as the Poaceae (Bush
2002).
In the tropics, and particularly in Africa, less work

has been carried out on modern pollen–vegetation
relationships than in temperate regions; Lézine et al.
(2009) synthesised modern pollen studies in sub-
Saharan Africa and returned 452 modern samples
from the whole region. There have, however, been

Figure 1. Map showing Ghana in wider context of Africa (left) and precipitation map of Ghana showing the position of the two field sites
(right) (rainfall data from WorldClim).

46 A. C. M. Julier et al.



some wide-ranging African studies that have shown
that modern pollen assemblages, drawn mainly from
surface samples, represent their parent vegetation
types well (Gajewski et al. 2002; Watrin et al.
2007; Lebamba et al. 2009). Consequently, recon-
structing vegetation, with a view to informing inter-
pretations of the fossil record and predictions of the
effects of future climate change is a possibility (Hély
et al. 2006; Blois et al. 2013). Neotropical pollen
studies also show that there are clear changes in
pollen assemblages along savannah to forest transi-
tions, with shifts from herbaceous and grass domi-
nated assemblages to arboreal dominated forest
assemblages (Gosling et al. 2009; Alejandra et al.
2013).
No modern pollen–vegetation relationship studies

have been conducted in forested regions of Ghana
and just one from the savannah–forest transitional
zone (Julier et al. 2018). This study will therefore
provide useful insights into pollen deposition in
Ghana, and West Africa more widely. We present
modern pollen assemblages collected in artificial
pollen traps deployed in two forest settings in
Ghana; one wet evergreen rainforest (Ankasa) and
one moist semi-deciduous forest (Bobiri). These
sites have been chosen due to their proximity to

Lake Bosumtwi, a meteor-impact crater lake in
Ghana, which has given rise to the longest terrestrial
pollen record in West Africa (540 000 years) (Sha-
nahan et al. 2006, 2012; Miller & Gosling 2014;
Miller et al. 2016). We address the following aims:

1. Characterisation of assemblages from a wet
evergreen ecosystem and a moist semi-decid-
uous forest ecosystem in terms of their most
abundant and consistently occurring pollen
taxa.

2. Exploration of drivers of variation in representa-
tion in each of the most abundant taxa.

3. Consideration of the implications of this work
for models of pollen distribution and pollen
trapping studies.

Site descriptions

The two forest sites in this study, Ankasa and
Bobiri, are located in tropical West Africa, within
the Guineo-Congolian centre of endemism (White
et al. 1983; Gautier & Spichiger 2004). Guineo-
Congolian forest accounts for much of the forest
cover across tropical West Africa, from Senegal to
Togo, and encompasses many endemic species and

Figure 2. Maps of all trees in the plots (100 m × 100 m), scaled by the square root/10 of their diameter at breast height (DBH). A. Ankasa.
B. Bobiri. Red symbols indicate trap positions and bold numbers trap numbers. Pollen influx is shown below for all samples from each
trap. Bobiri plot is rotated by 90° in this plot, in order to display influx values below map.
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different vegetation types (Bongers et al. 2004). The
region is characterised by very high rainfall (up to
4000 mm/year) with the amount of rainfall being a
determining factor in the vegetation type. According
to the updated Köppen climate classification system,
Ankasa is classified as wet evergreen rainforest,
within the Aw Monsoon climate zone, and Bobiri
as moist semi-deciduous forest, within the Aw Tro-
pical savannah climate zone (Peel et al. 2007). Dur-
ing this study, rainfall varied from 1200 mm/year at

Bobiri to over 2000 mm/year at Ankasa, and the
rainy season was unusually dry in 2013 (OCHA
2013).

Ankasa (ANK02). — The first site, Ankasa is
located in the Ankasa Conservation Area in south-
west Ghana, and the plot is located at 5° 16ʹ 06″
N, 2° 41ʹ 38″ W. The plot was established in 2011
and a vegetation survey of all trees > 10 cm dia-
meter at breast height (DBH) was conducted. Plot

Figure 4. Non-Metric Multidimensional Scaling (NMDS) plots showing Ankasa (A and B) and Bobiri (C and D), with hulls overlain by
trap (A and C) and by year (B and D). Bold numbers refer to traps, with non-bold labels referring to year and trap, i.e. A12T24 = Ankasa
2012, Trap 24.
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data is available from forestplots.net (Lopez-Gon-
zalez et al. 2011). The vegetation type of the
Ankasa plot is wet evergreen rainforest, and is
the most biodiverse area of Ghana, with multiple
species of very high conservation priority
(Hawthorne et al. 1998). The most abundant
taxa in this plot, by percentage of stems, are Dry-
petes aylmeri Hutch. et Dalziel (8.9%), and Cyno-
metra ananta Hutch. et Dalziel (7.1%).
Herbaceous plants were not surveyed, but include
taxa such as Psychotria, and members of the Zin-
giberaceae, Orchidaceae and Commelinaceae,
along with various fern species (Hawthorne et al.
1998). The diversity of the surveyed vegetation in
the Ankasa plot is 4.0 (Shannon Index) and there
were 449 individual trees recorded (Figure 1A), of
100 different taxa.
The heights of the trees (> 10 cm DBH) in the

Ankasa plot range from 4.1 to 41.6 m, with an
average of 18.9 m. The soil is a Forest Oxysol,
with a pH 3.5–4, which is prone to leaching and
very infertile (Wildlife Division [Forestry Commis-
sion] 2000). Ankasa experiences some of the high-
est rainfall in Ghana; in 2011–2012, the total
rainfall this plot experienced was 1902 mm, in
2012–2013 it was 1788 mm, and in 2013–2014
it was 2089 mm.

Bobiri (Bobiri StrictNature Reserve; BOB01). — Bobiri
is located at 6° 42ʹ 15″ N, 1° 19ʹ 06″ W, in the
Bobiri Forest Reserve. The plot is designated as a
‘Strict Nature Reserve’ in which no logging was
allowed. This forest plot was established in 2011
and a vegetation survey of all trees > 10 cm DBH
was conducted. Plot data is available from forest-
plots.net (Lopez-Gonzalez et al. 2011). The vege-
tation type of this plot is moist semi-deciduous
rainforest (Hall & Swaine 1981), and fits into the
category of ‘Drier peripheral semi-evergreen Gui-
neo-Congolian rain forest’ (White 1983). The
most abundant taxa in this plot, by percentage of
stems, are Celtis mildbraedii Engl. (14.7%) and
Funtumia elastica (Preuss) Stapf (5.0%). Herbac-
eous taxa were not surveyed, although may com-
prise families such as the Marantaceae and
Verbenaceae (White 1983). The diversity of the
Bobiri plot (Shannon Index) is 3.8, and there
were 483 individual trees recorded (Figure 1B),
of 87 different taxa.

The height of trees (> 10 cm DBH) in Bobiri is
around 37 m, with some emergents of up to 60 m
(Hall & Swaine 1981). The soil is a Forest Ochrosol,
which is red, well-drained, and relatively high in
organic content near the surface but leached further
down in the profile. The mean annual rainfall at this
site over the years we sampled was 1443 mm. Rain-
fall was measured at the Forestry Research Institute
of Ghana (FORIG), which is around 30 km away
from the site, and there were some missing measure-
ments, meaning that accurate yearly averages were
not available.

Material and methods

Field methods

Pollen traps were deployed in 100 m × 100 m
vegetation plots (Figure 2) in the Ankasa Nature
Reserve and the Bobiri Strict Nature Reserve in
October of 2011, 2012 and 2013, and were col-
lected yearly. Sample dates are referred to by
their year of collection e.g. ‘2012’ is equivalent
to October 2011–October 2012. The traps were
placed at 10 m intervals along the 60 m east–west
(E–W) line in Ankasa, and the 40 m south–north
(S–N) line at Bobiri (Figure 1). Pollen traps were
made following Gosling et al. (2003). Vegetation
surveys were conducted by researchers from
FORIG and the University of Oxford, and mea-
sured all plants with > 10 cm DBH. Vegetation
data for these sites is available from www.forest
plots.net.

Laboratory methods

Traps for processing were selected to give a rela-
tively even spatial coverage of the plot across years,
with at least five traps per year being processed and
counted. The pollen was extracted from the traps for
analysis following the method of Gosling et al.
(2003). Lycopodium tablets (University of Lund,
batch #12 4961, containing 12 542 ± 931 spores
per tablet) were added to enable calculations of
pollen concentration (Stockmarr 1971). Samples
were counted at ×400 magnification using a Nikon
Eclipse 50i microscope. Pollen counts were
recorded digitally and were counted to a statistically
representative number (Keen et al. 2014). Pollen
taxa were identified using literature on tropical

Figure 5. R-rel plots Ankasa. 100 m × 100 m vegetation plot maps of Ankasa, for the five most abundant vegetation taxa also represented
in the pollen assemblages, over the three years of sampling. Numbers underneath or to the left of traps indicate pollen trap number.
Homalium symbols are square rooted, as this taxon’s R-rel values were too large to fit on the plots.

←
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Figure 6. R-rel plots shared taxa 100 m × 100 m vegetation plot map of Ankasa and Bobiri, for the shared taxa Melastomataceae/
Combretaceae and Moraceae, over the three years of sampling. Numbers underneath or to the left of traps indicate pollen trap number.
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West Africa (Van Campo 1974; Ybert 1979; Riollet
& Bonnefille 1980; Gosling et al. 2013), the African
Pollen Database (Vincens et al. 2007) and the refer-
ence collection at the University of Amsterdam, the
Netherlands.

Statistical methods

Pollen to vegetation ratios, or R-rel values, were
calculated by dividing the percentage of a pollen
taxon in one sample by the basal area of the plot
occupied by its parent taxon in the vegetation (Davis
1963). Non-Metric Multidimensional Scaling
(NMDS) analysis was also undertaken in Vegan,
excluding singletons (taxa which occur in only one

sample) and using double Wisconsin standardisation
(which corrects for sample size and effects of very
rare or abundant taxa by diving each taxon by its
column maximum, and then by its row total) with
dimensions = 3 (Bray & Curtis 1957). Results were
plotted in two-dimensions, as this captured the
dominant patterns observed in three dimensions
but in a simpler graphical presentation. ‘Sample’ is
used to mean the pollen from one trap in one year,
whereas ‘Trap’ refers to multiple samples from the
same position within the plot over three years. Pol-
len assemblages were visualised in C2 (Juggins
2007). Statistical analyses were carried out in R
statistical software (R Core Team 2016) with R
studio version 1.0.136.

Figure 7. Pollen diagram (%) from Bobiri, showing most abundant taxa. Zones are indicative of traps, with each bar within each zone
indicating one year of sampling. ‘B12T11 = Bobiri 2012, Trap 11’.
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Results

Ankasa

Pollen assemblages from Ankasa were variable, both
between years and traps (Figure 3, 4). Taxa that
occurred in all samples over all three years are Cyno-
metra (0.3–68.8%), Alchornea (0.7–18.7%), Type 12

(0.3–6.6%), and Poaceae (0.3–4.2%). Monolete
and Trilete spores are also present in all samples
(but with percentages calculated outside of the pol-
len sum), with abundances ranging 5.2–43.0% and
1.0–10.7% of the pollen sum, respectively. The pol-
len influx varied from 36 to 422 grains/cm2/month,
with an average of 141 grains/cm2/month. A total of

Figure 8. R-rel plots Bobiri 100 m × 100 m vegetation plot maps of Bobiri, for the three most abundant vegetation taxa also represented in
pollen assemblages, over the three years of sampling. Numbers to the left of traps indicate pollen trap number.
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144 pollen taxa were recorded, of which 49 were
assigned botanical affinities. Count totals for sam-
ples from Ankasa ranged from 183 to 743 grains,
with an overall count of 5670 grains.

Major taxa. — Major taxa for Ankasa are presented
in Figures 3, 5 and 6. Drypetes was over-represented
in four samples, under-represented in ten samples,
and absent from two samples. The R-rel values of
this taxon ranged from 0.01 (Trap 26, 2014) to 7.64
(Trap 31, 2013), with a sample average of 1.37. In
2012, the average R-rel was 1.65, in 2013, 1.87 and
in 2014, 0.52. The trap with the lowest average
R-rel value was Trap 33 (0.03) and the highest was
in Trap 31 (5.12). Cynometra was over-represented
in seven samples, under-represented in nine samples
and absent from none. The R-rel values of this taxon
varied between 0.04 (Trap 31, 2013) and 8.48
(Trap 24, 2013), with a sample average of 1.44. In
2012 the average R-rel was 0.55, in 2013 it was 2.62
and in 2014 it was 1.33. Its lowest average R-rel was
in Trap 31 (0.11) and the highest was in Trap 24
(4.36).
Homalium was over-represented in eight samples,

and absent from the remaining eight samples. The
R-rel values of Homalium ranged from 9.20 (Trap
31, 2013) to 127.92 (Trap 28, 2014), with a sample
average of 26.05. In 2012, the average R-rel was
7.11, in 2013, 20.31 and in 2014, 54.52. The trap
with the lowest average R-rel value was Trap 31
(21.5), and the highest was Trap 28 (63.09). Vitex
was over-represented in three samples, under-repre-
sented in three, and not present in ten. It had R-rel
values from 0.26 (Trap 24, 2014) to 49.01 (Trap
26, 2014). Its average R-rel in 2012 was 1.35, in
2013 it was 3.40, and in 2014, 9.85. The trap with
the lowest average R-rel value was Trap 24 (0.09)
and the highest was in Trap 26 (21.90). Uapaca was
over-represented in six traps, under-represented in
nine, and absent from one trap. Its R-rel values
ranged from 0.32 (Trap 31, 2013) to 6.51 (Trap
26, 2012). Its average R-rel in 2012 was 2.08, in
2013 it was 0.38 and in 2014 it was 2.89. The trap
with the lowest average R-rel was Trap 24 (0.69)
and the trap with the highest R-rel value was Trap
26 (2.48).
Melastomataceae/Combretaceae was present, but

under-represented in all samples. Its R-rel values
ranged from 0.02 (Trap 28, 2014) to 0.45 (Trap
28, 2012). Its average R-rel in 2012 was 0.23, in
2013 it was 0.16, and in 2014, 0.07. The trap with
the lowest average R-rel was Trap 31 (0.07) and the
highest average R-rel was 0.22 (Trap 28). Mora-
ceae-type pollen was over-represented in 12 samples
and absent from four. Its R-rel values ranged from

2.70 (Trap 31, 2012) to 43.72 (Trap 26, 2012). In
2012, its average R-rel value was 10.90, in 2013 it
was 2.26 and in 2014 it was 9.75. The trap with the
lowest average R-rel was Trap 24 (3.58), and the
trap with the highest average R-rel was Trap 26
(17.71).

Spatial and temporal separation of samples. —

Ordination of the samples from Ankasa illus-
trates that samples cluster by trap (the same
trap in different years e.g. Trap 24 in 2012,
2013 and 2014) rather than by year (e.g. Traps
24, 26 and 28 in 2012), this is illustrated by
Figure 4, in which the hulls in: (a) demonstrate
samples of the same trap over all three years,
whereas (b) shows the traps linked by year of
sampling.

Bobiri

Pollen assemblages from Bobiri were heavily domi-
nated by one genus (Celtis), which was found in
every sample and accounted for between 46.1%
and 89.4% of the pollen sum. In addition to Celtis,
taxa that were found in every trap were Pollen Type
46 (0.97–4.8%), Poaceae (0.1–1.5%), and Melasto-
mataceae/Combretaceae (0.2–9.0%). Monolete and
Trilete spores were present in abundances from
0.0% to 2.5% and 1.6% of the pollen sum, respec-
tively. The pollen influx varied from 97 to 675
grains/cm2/month, with an average of 462 grains/
cm2/month. A total of 104 pollen taxa were
recorded, of which 43 were assigned botanical affi-
nities. Count sizes for Bobiri ranged from 377 to
798 grains, with an overall count of 8295.

Major taxa. — Major taxa for Bobiri are presented
in Figures 6, 7 and 8.
Celtis was over-represented in all samples. Its

R-rel values ranged from 2.28 (Trap 20, 2014) to
4.41 (Trap 15, 2014). Its average R-rel in 2012 was
3.65, in 2013 it was also 3.65, and in 2014 it was
3.59. The trap with the lowest average R-rel value
was Trap 15 (2.98) and the highest average R-rel
was recorded in Trap 17 (4.25). Triplochiton sclerox-
ylon K.Schum. was over-represented in four sam-
ples, under-represented in ten, and absent from
two. Its R-rel values ranged from 0.04 (Trap 13,
2013) to 5.95 (Trap 20, 2013). The average R-rel
of this taxon in 2012 was 0.07, in 2013 it was 2.83,
and in 2014 it was 0.56. The trap with the lowest
average R-rel value was Trap 18 (0.00), and the trap
with the highest average R-rel value was Trap
20 (9.56).
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Melastomataceae/Combretaceae pollen was over-
represented in nine samples and under-represented
in six. The R-rel values of Melastomataceae/Com-
bretaceae in the plot ranged from 0.22 (Trap 17,
2014) to 10.31 (Trap 11, 2012). Its average R-rel in
2012 was 3.70, in 2013 it was 3.41 and in 2014,
4.37. The trap with the lowest average R-rel value
was Trap 17 (0.57) and the trap with the highest
average R-rel was Trap 11 (9.12). Moraceae pollen
was over-represented in four samples, under-repre-
sented in eight, and absent from three. The R-rel
values of this taxon ranged from 0.09 (Trap 13,
2014) to 1.45 (Trap 11, 2012). The average R-rel
value of this taxon in 2012 was 1.29, in 2013 it was
0.12, and in 2014 it was 0.69. The lowest average
R-rel per trap was 0.29 (Trap 17) and the highest
was 1.47 (Trap 20). Ceiba was over-represented in
one sample, under-represented in four, and absent
from ten samples. Its R-rel values ranged from 0.06
(Trap 13, 2014) to 1.50 (Trap 20, 2014). The
average R-rel value of this taxon in 2012 was 0.02,
in 2013 it was 0.09, and in 2014 it was 0.31. The
lowest average R-rel value per trap was 0.03 (Trap
17) and the highest was 0.5 (Trap 20).

Spatial and temporal separation of samples. —

Ordinations of the samples from Bobiri illustrate
that there is clustering by both trap and year (Fig-
Figure 4). When hulls outlining the same trap in
different years are overlain on the NMDS
(Figure 4C), there is some overlap between traps.
When year hulls are overlain (Figure 4D), there is

overlap in the ordination space occupied by the
three years of sampling. Samples from 2013 fell
among those from 2012 and 2014, indicating a
temporal gradient along NMDS axis 1.

Discussion

Drivers of heterogeneity of pollen assemblages and
characteristic taxa

Pollen assemblages from both plots, Ankasa and
Bobiri, exhibit variation temporally and spatially.
In some taxa, vegetation structure is likely to be
the driving force in the depositional pattern
observed, whereas for others, temporal factors,
reproductive strategy or pollination syndrome are
identified as potential drivers, although in reality, a
complex interaction of all of these factors will have
resulted in the results observed. Preservation is not,
in this instance, likely to have affected the pollen
assemblages recovered from traps, because pollen
is highly resistant to degradation over long time

scales (Fraser et al. 2012) and traps were deployed
for intervals of one year only in this study.
There are many pollen types that do not have

parent plants recorded in the vegetation surveys.
This is partly due to limitations of the surveys them-
selves, as they do not encompass plants of < 10 cm
DBH, or herbaceous taxa. Pollen from outside the
boundaries of the plots may also contribute to pollen
signals within the plots, but it is not possible to
determine which taxa these are without more exten-
sive vegetation surveys, and taking into account
smaller plants and herbaceous taxa.

Ankasa. — Drypetes exhibits some spatial and tem-
poral heterogeneity in R-rel values. Drypetes aylmeri,
the only species of Drypetes in this plot, accounts for
9.6% of the basal area, and has an average height of
18.3 m. Trap 31 shows larger R-rel values than the
other traps in the plot, despite there being a higher
density of Drypetes trees in the proximity of Traps
24–28. There is a lower density of all trees in the
vicinity of Trap 31 (Figure 2A), because a very large
canopy tree died and left a gap in the canopy. The
overall influx of pollen into Trap 31 is not higher
than for the other traps, but the proportion of Dry-
petes pollen is higher. Drypetes is an entomophilous
genus, but it is also dioecious, which may contribute
to its pollen being dispersed by wind as well as by
insects (ambophily), as described for other dioecious
taxa (Bush & Rivera 1998).
Cynometra is a chiropterophilous taxon, in

which flowers are borne on the trunk in the dry
season. This may explain the taxon’s abundance,
as its pollen is released not into the canopy, but
the understorey, making it more likely to be
deposited in traps placed near the forest floor.
This taxon is both under- and over-represented
in traps within the plot, indicating that pollen
deposition is very local and originates from trees
close to traps.
Homalium exhibits the highest R-rel values of any

taxon in this study, and is also highly spatially het-
erogeneous, being either consistently over-repre-
sented or consistently absent in the same trap over
all years (apart from Trap 33, from which it is
absent in 2012 but over-represented in 2013 and
2014). Homalium deweverei De Wild. et T. Durand,
the only Homalium species in this plot, is bisexual
but has open flowers, and produces flowers in large
inflorescences, potentially accounting for the high
levels of over-representation observed here. There
is not a clear link between proximity to individuals
and amount of pollen present. For instance, Trap 33
is nearest to one of the Homalium trees, but is not
the Trap in which Homalium pollen is most abun-
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dant. This discrepancy could be due to smaller
(under 10 cm DBH) Homalium plants producing
pollen at a local scale within the plot.
Vitex shows a localised signal, being over-repre-

sented in Trap 25 and 26, but almost absent from
the other traps in the plot. Members of the genus
Vitex do not account for a large part of the vegeta-
tion (1.2% of the basal area). The degree of over-
representation varied between years, being most
over-represented in 2014. Vitex micrantha Gürke,
the most abundant species of Vitex in the Ankasa
plot, is generally a small tree, whose average height
in the plot is 20 m. The height of the individual
closest to Traps 25 and 26 is 15 m, meaning that
pollen produced by this individual would be unlikely
to travel far, due to a lack of air currents in the
understory of the forest (Kuparinen et al. 2007).
Uapaca corbisieri De Wild., the only species of

Uapaca in this plot, is dioecious and is most over-
represented in 2012 but consistently under-repre-
sented in 2013. The majority of trees of this taxon
are near Traps 33 and 31, but its pollen does not
show a clear spatial pattern of representation, with
Trap 26 showing the most over-representation in
2012, but Traps 33 and 31 in 2014. The sexes of
the plants of U. corbisieri in this plot are not known,
a factor that may contribute to the spatial discre-
pancy observed in its pollen signal.

Bobiri. — Celtis exhibits a relatively uniform distri-
bution of R-rel values over both years and traps, and
is consistently over-represented. It is an anemophi-
lous taxon, meaning that over-production and wide
dispersal of pollen is expected. This taxon is also the
most abundant in the vegetation, accounting for
14.7% of the stems in the plot. This taxon is one
of the most evenly distributed, although the propor-
tion of its pollen that originates from outside the plot
is not discernible.
Triplochiton scleroxylon is most noticeably variable

by year, being most abundant in 2013. Ghana
experienced a rainfall deficit in summer 2013
(OCHA 2013) and, therefore, this pattern of pollen
dispersal is consistent with observations that this
species tends to flower primarily during years in
which the July–August rainfall is below average
(Jones 1974). That pollen is observed in 2012 and
2014 as well as 2013 implies that T. scleroxylon may
flower more frequently than herbarium records sug-
gest (albeit with a lower frequency of individuals
flowering, or trees producing fewer flowers). The
nature of botanical collection is such that observing
flowers in the canopy is often very difficult, and
therefore, collection of specimens is most likely to
occur when flowers are abundantly apparent. It is

possible, therefore, that when few flowers are pro-
duced, they are less likely to be sampled for herbar-
ium specimens (an effect that has been noted for
other taxa e.g. Asteraceae [Schmidt-Lebuhn et al.
2013]). This highlights a potential use for pollen
traps in assessing phenology of tropical trees, as
direct observations of these taxa is often impractical
or impossible.
Ceiba is a pan-tropical genus that has been iden-

tified, in very low abundances (< 1.0% of pollen
rain), in the Lake Bosumtwi record (Maley &
Livingstone 1983), although it was not found in
more recent studies of the Bosumtwi record (Miller
& Gosling 2014). Ceiba is chiropterophilous, with
pollen being distributed long distances by bats (20
km) (Dick et al. 2007). This may explain its scar-
city in the fossil record, as pollen from bat polli-
nated flowers tends to be larger and therefore may
be less likely to be borne on air currents and depos-
ited in sediments (Stroo 2000). Here, there is a
consistent presence of Ceiba pollen in all years in
one trap, Trap 13, which is close to an individual of
Ceiba pentandra (L.) Gaertn. Trap 20 in 2014 exhi-
bits an over-representation of Ceiba pollen relative
to the vegetation of the plot, although this may
result from extra-plot pollen rain, as Trap 20 is
relatively close to the edge. The presence of Ceiba
indicates that small amounts of its pollen are trans-
ported on air currents, potentially also accounting
for its presence in the fossil record.
Monolete and trilete spores are abundant in

Ankasa assemblages, likely due to ferns growing
(although not captured in the vegetation surveys)
in the ecosystem. Ferns are abundant in moist envir-
onments due to their need for water to reproduce,
and their lack of tolerance of fluctuating water avail-
ability (Page 2002).

Shared taxa. — Melastomataceae/Combretaceae
pollen was present in both plots, although tended to
be over-represented in Bobiri and under-represented
in Ankasa. This taxon accounted for under 10% of the
pollen sum in all samples at both plots, but accounted
for a much larger proportion of the number of trees
(52 stems) and basal area of Ankasa (13.2%) than in
Bobiri (three stems and 0.9%).
Moraceae pollen was found in both plots at rela-

tively low abundances (not above 5.5% in any sam-
ple), in Ankasa being heavily over-represented,
whilst in Bobiri being under-represented. This is
due to the differing number Moraceae individuals
in each plot (one in Ankasa, and 11 in Bobiri,
accounting for 0.12% and 1.64% of the vegetation,
respectively), but could also be accounted for by
pollen from outside of the plot contributing to the
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signal in Ankasa. This finding differs from that in
the Neotropics (Gosling et al. 2009) in which Mor-
aceae pollen is found to be over-produced in a vari-
ety of ecosystems.
Melastomataceae/Combretaceae and Moraceae

have been shown to over-produce pollen relative to
their vegetative abundance in other modern pollen
studies (Bhattacharya et al. 2011; Urrego et al.
2011). Here, however, we show that there is dispar-
ity in the representation of these taxa at a local level,
and that pollen production by these taxa does not
consistently over- or under-represent their vegetative
abundance. At a sub-plot level, the more even dis-
tribution of the pollen of Melastomataceae/Combre-
taceae and Moraceae could indicate that these taxa
disperse pollen higher up in the canopy, so that it is
dispersed further and is rained into traps in a rela-
tively more even manner, potentially giving a regio-
nal vegetation signal, but one that is not necessarily
representative of the local vegetation.
The Melastomataceae and Combretaceae families

together contain more than 4000 species, of which
many are herbaceous and constitute elements of the
under-storey. This may contribute to the seeming
lack of correlation between large trees of these
families and their pollen signal. The Moraceae is
also a large and diverse family (> 1000 species),
meaning that shrubby taxa of < 10 cm DBH may
also be contributing to the pollen rain, confounding
the wider signal.
Poaceae is present in low abundances in all sam-

ples from Ankasa and Bobiri, and Alchornea is pre-
sent in all samples but one (Bobiri Trap 15, 2014).
Alchornea has been recorded in the wider Ankasa
Conservation Area, and the genus contains several
shrubby species that are widespread in West Africa.
Due to the fact that it is a small shrub whose
recorded measurements are mostly < 10 cm DBH
(Hawthorne et al. 1998; Hawthorne & Jongkind
2006), it is not recorded in the vegetation surveys
of our plots, even if present. Alchornea is wind polli-
nated and so is likely to produce abundant pollen,
meaning that its presence in all samples may also be
due to transport from outside of the plots.
The presence of Poaceae in low abundances likely

represents longer-distance transportation (the near-
est open areas in which grasses could feasibly grow
are not within 100 m of the plots). The likely pre-
sence of long distance transported pollen demon-
strates that although the pollen assemblages within
these plots are highly dominated by heterogeneous
local pollen signals, a regional element may still be
present, most notably evidenced by Poaceae grains,
but potentially also by other pollen types without

botanical parents within the plot. The reason for
the low abundance of these grains is likely due to
the closed-canopy nature of the ecosystems in which
traps are placed, and the small size of the pollen
traps resulting in a predominantly local signal
being record (Jacobson & Bradshaw 1981). Identify-
ing grass pollen to genus level would help to deter-
mine the local and regional components of the grass
pollen signal; this is not generally possibly using
light microscopy, but it has been shown that there
is potential to identify grass pollen taxa based on
their wall chemistry (Julier et al. 2016).

Comments on movement of pollen

Implications for models of pollen dispersal. — The
movement of pollen within ecosystems has long
been recognised as a complex phenomenon (Davis
1963; Tauber 1965). Factors such as wind speed
and direction, canopy structure, and pollen weight
and morphology can all influence how pollen grains
move (Prentice 1985). Here, we have demonstrated
that both spatial and temporal factors influence how
pollen generated by plants in tropical West African
forests moves and is deposited in ecosystems, and
that pollen does not appear to be produced by plants
in these plots in a consistent manner.
Some models assume an isotropic pollen dispersal

curve (Sugita 1994), that is, that pollen is equally
likely to be distributed all around the source. In our
data, however, there are many instances where a
taxon is over-represented in one trap, and under-
represented or absent from one of the traps adjacent
to it. This is likely due to the structure of the forest
impeding pollen movement, so although in theory
pollen distribution may be isotropic, in this example,
it appears to be strongly anisotropic. Langrangian
stochastic dispersal models of pollen dispersal
(Kuparinen et al. 2007; Theuerkauf et al. 2013),
which have now been integrated into the REVEALS
model of quantitative vegetation reconstruction
(Theuerkauf et al. 2016) may help to account for
this discrepancy by modelling the movement of indi-
vidual grains, although these models have yet to be
applied to complex tropical systems.
Pollen sources of the same taxon in models of

pollen distribution are often assumed to produce
the same amounts of pollen, with pollen produc-
tivity values being generated for taxa using empiri-
cal data (Theuerkauf et al. 2016). Our data show
that this does not appear to be the case: not only
does the amount of pollen arriving in traps vary
between traps within the same plot, even when
there is a relatively uniform distribution of the
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parent vegetation within the plot (e.g. Drypetes)
but it also varies between years (e.g. Triplochiton
and Vitex), indicating that pollen production from
the same ecosystem may vary between years and
sampling locations. Local variation in pollen
deposition could be affected by small-scale varia-
tions in canopy openness and air movements
within the forest (Kuparinen et al. 2007; Pan
et al. 2014), whereas year-on-year variation could
be due to small variations in temperature affecting
phenology (Pau et al. 2013). Rainfall may also
affect the amount of pollen reaching traps, either
through being washed into them from the air or
off leaves and flowers over-hanging the traps.
Therefore, the amount of rainfall received at each
site may affect the pollen assemblages at that site,
depending on which taxa were flowering during
rainfall (although the majority of taxa flower in
the dry season). Melastomataceae/Combretaceae
and Moraceae R-rel values (Figure 6) demonstrate
that in different ecosystems, estimates of pollen
productivity for the same taxon can be very differ-
ent, and therefore that generating reliable pollen
productivity estimates for tropical taxa could be
problematic.
It is notable that the majority of the tree taxa in

both plots are entomophilous, but only a relatively
small proportion are represented in pollen traps.
This indicates that there is significant variation in
the amount of pollen produced and released into the
environment by entomophilous taxa, and that
despite the lack of anemophily, there was still con-
siderable air-borne pollen deposition occurring in
the plots.

Implications for artificial pollen trapping studies. — At
Ankasa, we observed a high level of spatial consis-
tency of pollen rain between years, likely due to low
wind speeds under the canopy of the systems stu-
died (Kuparinen et al. 2007). This leads to very
different relationships between pollen and vegeta-
tion being observed within very small spatial scales.
For instance, if Trap 33 alone had been sampled
across the three years of the study, Drypetes, Cyno-
metra (two of the most abundant tree species in the
plot) and Vitex, would have been severely under-
represented or entirely absent from the resultant
pollen assemblages, whilst a mere 20 m away, Trap
31 exhibits very high levels of Drypetes. Based on the
levels of heterogeneity observed, it is likely the case
that, had more pollen traps been counted, a higher
level of spatial heterogeneity would have been
revealed.

At Bobiri, although there was separation of traps
and years, a temporal change was clearer than at
Ankasa. The three years over which pollen was col-
lected in this study were not highly heterogenous,
climatologically; 2013 was relatively dryer than 2012
and 2014, but this signal was only reflected notice-
ably in one taxon, Triplochiton scleroxylon. As only
three years of data collection was possible, it is pos-
sible that a stronger temporal signal would be
observed had more years of sampling been under-
taken.
The disparity between artificial pollen trap sam-

ples from within single vegetation plots has implica-
tions for the design of future pollen-trapping studies,
because high spatial resolution sampling is not the
norm in such studies. It is also possible that esti-
mates of the number of years needed for pollen
trapping studies in the tropics of at least three
(Bush & Rivera 1998) or at least ten (Haselhorst
et al. 2013) in order to obtain representative samples
may be unnecessarily high, and a good level of
representation may be possible by increasing the
spatial resolution of sampling within years, particu-
larly in rainforest settings.
Although the most abundant trees and pollen taxa

are the same for both plots, some of the most abun-
dant pollen taxa (such as Alchornea and Macaranga)
are not recorded in the vegetation. This is, largely, a
vegetation survey design problem, however, and we
would therefore recommend that vegetation surveys
for palynological purposes include samples of
shrubby and herbaceous taxa of < 10 cm DBH so
that R-rel values can be obtained for taxa such as
these.

Conclusion

In pollen assemblages recovered from Ankasa, the
two most abundant vegetation taxa (Cynometra and
Drypetes) are also the most abundant taxa in the
pollen assemblages. In Bobiri, Celtis is the most
abundant vegetation and pollen taxon. There are,
however, many vegetation taxa in both plots that are
not represented in the pollen assemblages, which is
likely due to the dominance of entomophilous vege-
tation taxa.
Pollen production and dispersal are not homoge-

nous in the plots studied, and there is considerable
heterogeneity between pollen assemblages recovered
from artificial pollen traps placed within the same
plot. This is likely due to the structure of the vegeta-
tion and the phenology and pollen dispersal
mechanisms of the vegetation taxa within our plots.
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