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EDITORIAL

The ecosystem dynamics of Amazonian and Andean forests

The importance of Amazonian and Andean rain forests
in the Earth System cannot be overstated. They store ca.
100 billion tonnes of carbon in their biomass (Malhi et al.
2006; Saatchi et al. 2007), are responsible for 10–15% of
global net primary productivity (Melillo et al. 1993; Zhao
and Running 2010) and recycle 25–50% of the rainfall
that they receive (Salati and Vose 1984; Costa and Foley
2000). Furthermore, these rainforests house a large frac-
tion of global biodiversity and provides a host of ecosystem
services of inestimable local, regional and global value.
In recent decades, great strides have been made in under-
standing how these forests vary over space in terms of
tree diversity (ter Steege et al. 2006), biomass storage
(Baker et al. 2004b; Malhi et al. 2006), wood produc-
tion (Malhi et al. 2004) and soil properties (Quesada et al.
2013). Considerable progress has also been made in under-
standing how above-ground biomass (Baker et al. 2004a),
tree mortality and recruitment (Phillips et al. 2004) and
some aspects of species composition (Phillips et al. 2002)
of tropical forests have been changing over time. Despite
these significant advances, much less progress has been
made in understanding other fundamental ecosystem pro-
cesses, such as internal carbon cycling, forest successional
pathways and the impacts of disturbance events on forest
structure. Knowledge of these processes is essential to bet-
ter understand the functioning of Amazonian rain forests
and predict how they may respond to global environmen-
tal change. This Special Issue includes papers that help to
bridge these and other important knowledge gaps in our
understanding of the ecological functioning of Amazonian
and Andean rainforests. This issue also showcases the cur-
rent strength of South American ecology as 21 out of the
28 articles in the edition were led by South American
scientists. The issue brings together work related to two
general strands of Amazonian ecosystem ecology, namely
biogeochemical cycling (13 studies) and forest community
dynamics and structure (15 studies).

Biogeochemical cycles

This section contains eight papers presenting a detailed
account of carbon cycling within different Amazonian
forests, one paper on woody debris dynamics along an
elevational transect, one paper comparing forest structural
properties across three elevational transects, one paper on
nitrogen cycling across the Amazon, one paper on the sea-
sonality of leaf gas exchange in an eastern Amazonian
forest, and one paper exploring dissolved organic
carbon transport via forested blackwater streams in central
Amazonia.

The eight carbon cycling studies are the first to be
published from the recently established Global Ecosystems
Monitoring (GEM) network (http://gem.tropicalforests.ox.
ac.uk/), a subset of sites of the Red Amazonica de
Inventarios Forestales (RAINFOR) and Andes Biodiversity
and Ecosystem Research Group (ABERG) forest inventory
networks. These studies use a standardised methodology
that involves quantifying the component terms (e.g. leaves,
wood and roots) of net primary productivity (Aragão et al.
2009; Girardin et al. 2010) and autotrophic respiration
(Malhi et al. 2009) to construct a detailed bottom-up carbon
budget for individual sites. Furthermore, as measurements
have been repeated at regular intervals throughout the year,
they have allowed, for the first time, the seasonal cycle of
individual components of the carbon cycle to be described.
By providing essential data on previously little-understood
internal carbon cycling within Amazonian and tropical
Andean montane forests, these studies have significantly
advanced our understanding of how carbon use efficiency
(the ratio of net primary productivity (NPP) to gross pri-
mary productivity (GPP)) and carbon allocation processes
vary from Amazonian lowlands to the Andean slopes of the
Basin. Each study consisted of a paired set-up, where the
internal carbon cycling of two plots, differing in some key
feature, was compared.

Da Costa et al. (2014) and Rocha et al. (2014) con-
sidered the effects of prolonged experimental drought and
experimental burning, respectively, on carbon cycling in
Amazonian forests. Da Costa et al. (2014) compared com-
prehensive carbon budgets of an eastern Amazonian forest
exposed to intense drought (∼50% reduction in through-
fall) for 10 years with those of a control plot without rainfall
exclusion and with previous carbon budget measurements
made at the same site following five years of experimental
drought. They found that some of the differences reported
previously, such as increased levels of autotrophic respira-
tion in the droughted plot, had been maintained. However,
there was also evidence that the forest was regaining stabil-
ity following previous large increases in tree mortality as
some processes, such as leaf area index, growth of small
trees and soil respiration, all appeared to have increased
in the droughted plot over recent years. There appeared to
be a surge of growth of small and medium trees that took
advantage of the light gaps created by the fall of large trees.
Rocha et al. (2014) compared an annually-burned transi-
tional forest plot in Mato Grosso, southern Amazonia, with
an adjacent unburned plot and found that, although produc-
tivity was generally lower in the burned plot, the magnitude
of the reduction was relatively small. For example, total net
primary productivity in the burned plot was ca. 15% lower
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than that in the control. The general finding of the study
therefore was that these forests were relatively resistant to
the fire regime imposed on them. However, as Balch et al.
(2008) demonstrated, more infrequent, three-yearly burns
could have more severe impacts because of greater fuel
loads building up on the forest floor.

Lowland Amazonian forests occur across a wide range
of climate and soil conditions. Four studies in this volume
explored how carbon cycling varied across a diverse range
of lowland forest types. Doughty et al. (2014) compared
the carbon budgets of a highly fertile eastern Amazonian
terra preta (‘black earth’) forest with that of a nearby for-
est on an infertile, highly weathered soil; Araujo-Murakami
et al. (2014) examined carbon cycling in two seasonally
dry forest plots located close to the Amazon forest–dry for-
est ecotone in Bolivia; Pasquel et al. (2014) compared the
carbon budgets of a white sand forest and a nearby for-
est on more fertile soil in north-western Amazonia; and
Malhi et al. (2014) compared two plots in south-western
Amazonia that differed in geological history and fertility.
The studies reported some unexpected results. Doughty
et al. (2014) found that, although net primary productiv-
ity was ca. 15% higher in the terra preta plot than the
control plot, most of the difference between plots could
be attributed to much greater fine root production in the
terra preta plot. This result is surprising as it contra-
dicts expectations arising from resource allocation theory,
whereby forests on nutrient-poor soils would be expected
to show increased investment to roots to maximise nutri-
ent uptake. Araujo-Murakami et al. (2014) reported sur-
prisingly high net primary productivity (ca. 15 t C ha−1

year−1) for a seasonally dry forest at the forest–savanna
ecotone but lower productivity (ca. 11 t C ha−1 year−1)
in a nearby plot, which had a more xeric species composi-
tion, possibly due to poorer soil drainage characteristics and
potentially less plant-available water. Pasquel et al. (2014)
found that GPP and NPP in two plots near Iquitos, north-
western Amazonia, were among the highest ever reported
for Amazonian rain forests. The high fertility of the soils
and lack of a dry season at these sites are thought to be
important for sustaining such high rates of productivity.
Surprisingly, the white sand forest in that study was found
to be as productive as the nearby forest on clay soils with
much better physical structure; however, this white sand
soil sits on highly fertile Pebas formation and, in terms
of species composition, the plot is akin to the forests on
the surrounding clay soils. Hence, it is unlike typical white
sand soil forests. Another important finding from this study
was that there was a surprisingly high degree of seasonal-
ity in productivity even though there was no seasonality in
rainfall, which was apparently related to the seasonality of
solar radiation at this site. Malhi et al. (2014) also reported
considerable seasonality in productivity at two forest plots
in Tambopata, south-western Amazonia, and presented the
first budgets for how NPP and total carbon expenditure
in a tropical forest varied at seasonal scales. Another
surprising outcome of this study was that differences in
GPP between these relatively fertile western Amazonian

forests and less fertile plots in eastern Amazonia were
quite small.

Four papers in this volume considered carbon dynam-
ics in Andean montane forests or elevation transects that
included montane forests. Girardin et al. (2014a) evalu-
ated internal carbon cycling at two plots located at an
altitude of ca. 3000 m, close to the climatic treeline.
Huasco et al. (2014) compared internal carbon cycling of
two mid-elevation forests (1500–1750 m) straddling the
montane/lowland forest ecotone. Gurdak et al. (2014) con-
sidered how woody debris dynamics varied along an eleva-
tional gradient ranging from 210 to 3025 m, while Girardin
et al. (2014b) evaluated how above-ground biomass stor-
age, tree height and species composition varied along
the same gradient. Girardin et al. (2014a) found substan-
tially lower NPP values for two upper montane forests
(ca. 7–8 Mg C ha−1 year−1 compared to 14–15 Mg C
ha−1 year−1 in lowland forests in the Peruvian Amazon)
and values of carbon use efficiency similar to those in
lowland forests. They also found some very interesting
seasonal patterns, with NPP displaying more seasonality
than autotrophic respiration and peaking in the warmer and
rainier season. Huasco et al. (2014) found very large dif-
ferences in productivity between a forest plot located at
1500 m and a forest plot located at 1750 m: the lower ele-
vation plot was found to be 50% more productive than the
higher one at 1750 m. The authors hypothesised that these
large differences between plots were due to differences in
cloud immersion as the plot at 1750 m was likely to be
more frequently immersed in clouds. Thus, a distinct eco-
logical shift may be occurring near this elevation so that
forests at 1500 m are similar in ecology and ecosystem
function to lowland forests, whereas those at 1750 m are
more similar in ecology to montane forests. It is notable
that the productivity of the 1500 m plot was similar to that
of lowland plots, suggesting little decline with elevation
until cloud base is reached. Gurdak et al. (2014) found lit-
tle relationship between woody debris stocks and elevation,
but found that woody debris respiration was significantly
correlated with soil moisture, temperature and wood den-
sity. An important finding of this study with implications
for understanding the impacts of climate change on Andean
forests was that woody debris respiration was consistently
more sensitive to temperature changes (higher Q10) at high
than at low elevations. Girardin et al. (2014b) found that
above-ground biomass and tree height both decreased sig-
nificantly with elevation in three elevational transects in
Bolivia, Peru and Ecuador, but that stem density increased.
Tree species richness, on the other hand, showed a humped
relationship with elevation, increasing until ca. 1750 m and
declining thereafter, following increasing cloud immersion.

Two papers in the biogeochemical cycling section of
the Special Issue focused on nitrogen cycling and the
seasonality of photosynthetic parameters. Nardoto et al.
(2014) studied nitrogen cycling patterns across Amazonia
by analysing data on δ15N concentrations in top-of-canopy
leaves from 65 rainforest plots. This study has advanced
our understanding of the nitrogen cycle in Amazonia
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by showing that dry season precipitation and soil age
exerted important controls on plant nitrogen availability
in Amazonia. The study also showed that most Fabaceae
species in Amazonia do not fix nitrogen, despite having the
ability to do so. Domingues et al. (2014) examined sea-
sonal variation in leaf-level gas exchange in the Tapajós
forest in eastern Amazonia. They found little evidence of
dry season limitation of leaf-level stomatal conductance
or photosynthetic capacity, providing support for previ-
ous findings which suggested that photosynthesis remained
high in the dry season in deep-rooted eastern Amazonian
forests. Finally, Monteiro et al. (2014) explored dissolved
organic carbon (DOC) export in blackwater streams in
central Amazonia. They demonstrated that electrical con-
ductivity was a good and low-cost proxy for DOC concen-
tration, and used their multi-year monitoring to estimate
that carbon export via DOC per unit area of watershed was
8.7 g m−2. This is a rarely quantified term in carbon bud-
gets, and this study showed that this DOC export flux was
likely to be too small to substantially affect forest carbon
balance estimates.

Forest community dynamics and structure

This section of the Special Issue contains 15 papers,
which can be divided into four general themes: (1) drivers
and patterns of forest structure and composition (four
papers); (2) temporal changes in composition, dynamics
and structure (three papers); (3) successional and distur-
bance dynamics (six papers); and (4) plant traits (two
papers).

Emilio et al. (2014) investigated the role of soil physical
properties in determining tree and palm basal area across
77 forest plots spread across Amazonia. Their findings
showed that soil physical properties were indeed important,
with the basal area of dicot trees highest in well-drained,
well-structured and deep soils, while palm basal area was
higher in poorly drained, less structured and shallow soils.
De Oliveira et al. (2014) investigated the diversity and dis-
tribution of lianas in different types of vegetation at the
Cerrado–Amazon rain forest transition. Their findings sug-
gested a high degree of specificity between liana species
composition and vegetation type, likely related to envi-
ronmental gradients. Flooded forests were found to have
particularly high liana abundance, although liana species
richness was generally low in these forests. Schietti et al.
(2014) developed a proxy for water table depth (terrain
height above nearest drainage) and used this to predict
plant community composition in 72 different forest plots
in central Amazonia. They found that plant composition
was highly correlated with vertical distance from the water
table. Furthermore, they also found high species turnover
extending up to 350 m horizontally from river margins. This
result has implications for Brazilian conservation laws,
which only require that riparian zones extending up to
30 m from river courses be protected. Stropp et al. (2014)
investigated whether there was an interaction between soil

nutrients and herbivory on seedling growth rates in the
upper Rio Negro, Amazonia. To test this, they transplanted
seedlings associated with white sand soils into forests with
clay-rich soils and vice versa, while also controlling for
the presence of herbivores. They found that the growth
of seedlings was similar regardless of presence/absence of
herbivore or the type of soil on which they were grown.

Butt et al. (2014) investigated changes in tree compo-
sition over a 20-year period in 46 Amazonian forest plots.
Three functional groupings were used in the analysis: dry
affiliates (species with a preference for dry conditions),
wet affiliates (species with a preference for wet condi-
tions) and climate generalists. The results showed that wet
affiliates and climate generalists moved from a state of
net basal area gain to dynamic equilibrium, where gains
and losses were equivalent, over the 20-year period of the
study. Dry affiliates, on the other hand, showed a strong
increase in stem recruitment and net basal area gain. The
results therefore hint at a climate-related shift in func-
tional composition in some parts of the Amazon. Marimon
et al. (2014) compared mortality and recruitment rates of
trees species in plots in the rainforest–savanna ecotone
of southern Amazonia with those in the core area of the
Amazon. Turnover rates in these transitional ecotone forests
were found to be considerably greater than those in core
regions of the Amazon. The results are especially surpris-
ing as these forests are found on deep, infertile soils usually
associated with low dynamism. However, the occurrence
of recent drought events in the forest–savanna transition
region of the Amazon confounds the results somewhat and
more work is needed to ascertain whether this is an intrin-
sic feature of these forests or a response to recent drought
events. Nascimento et al. (2014) examined compositional
changes in three compositional variants of rain forest in
Maracá Island, Roraima, Brazil, over the last 20 years.
One was Peltogyne gracilipes monodominant forest, one
had low abundance of Peltogyne gracilipes and in another
forest this species was absent altogether. The three forest
types exhibited considerable stability in terms of dynamics
(mortality/recruitment) and floristic composition over the
period of the study.

Espirito-Santo et al. (2014) used remote-sensing anal-
ysis to quantify the area affected by gaps and the carbon
flux-associated gap disturbances in an eastern Amazonian
forest. Comparison with ground measurements, however,
showed that the remote-sensing approach greatly overes-
timated the canopy gap fraction. The authors found that
only 30% of tree mortality was associated with canopy
gaps. These results demonstrate the importance of main-
taining long-term plots to accurately quantify mortality
rates. Flores et al. (2014) used a combination of remote
sensing and field studies to investigate the impact of fire
disturbance on floodplain forests of the Rio Negro. They
found that the fires resulted in catastrophic loss of forest
area (88% reduction) and mortality (91% of trees died).
Furthermore, forest recovery was much lower in the flood-
plain forests than in normal terra firme forests. Overall, the
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results suggested very low resilience of blackwater flood-
plain forests to fire. Oliveras et al. (2014) examined the
effects of fires on forest structure and composition at the
treeline (ca. 3500 m elevation asl) of the Andes in southern
Peru. They found that fires had a strong effect upon forest
structure up to 15 years after fire. The species-level fea-
tures most associated with fire tolerance were the ability to
resprout after fire, and tree biomass (with large trees being
more resistant to fire damage).

Williamson et al. (2014) compared changes in woody
vegetation following regrowth on abandoned pastures
with those following regrowth on abandoned clearcuts.
Differences in land-use history led to different successional
pathways with species of Vismia dominating following pas-
ture abandonment and species of Cecropia dominating on
abandoned clearcuts. The authors found that stem densities
exhibited no trend during the first 25 years of secondary
succession, irrespective of land-use history. Species diver-
sity increased at a much faster rate following regrowth on
abandoned clearcuts, dominated by Cecropia, than on aban-
doned pastures dominated by Vismia. Jakovac et al. (2014)
examined how controls on seedling growth under these
two different successional pathways differed. They found
that successional age and light intensity affected seedlings
differently in the two successional pathways. In Cecropia-
dominated successions, seedlings were limited by light, but
this was not the case in Vismia-dominated successions.
Aguilar Jr et al. (2014) investigated the process of inva-
sion of Acacia mangium in savannas adjacent to a forestry
plantation in Roraima, northern Amazonia. They found that
individuals of A. mangium were dispersed up to 900 m
from the plantation border 8–9 years after planting and
found evidence that adult savanna trees might be facilitating
the establishment of Acacia. Given these characteristics, A.
mangium could rapidly become a serious invasive threat to
Amazonian savannas.

Bentos et al. (2014) investigated whether the trade-
off between seed mass and number was related to fruit
variables (fruit mass and fruit number per tree) for
12 commonly-occurring pioneer species in Amazonia. Seed
mass, fruit mass and fruit number explained most of the
variation in seed number. They concluded that biomass
trade-offs between seed size and number were partly deter-
mined by packaging (seeds per fruit, number of fruits,
fruit mass). Queenborough and Porras (2014) explored the
potential of extracting specific leaf area (SLA) measure-
ments from herbarium samples. More specifically, they
looked at the effect of pressing and drying on leaf area
to ascertain whether this introduced error into SLA esti-
mates from herbarium specimens. They found a significant
decrease in leaf area following drying (ca. 8%), but this
decrease in leaf area had no overall statistically signifi-
cant effect on SLA. Family-level responses, however, varied
widely, suggesting that herbarium samples can be used if
shrinkage is quantified properly.

The papers contained in this Special Issue span a wide
range of topics within the overarching field of ecosystem
ecology of Amazonian lowland and Andean montane forest

ecosystems. As a whole, they have substantially added to
our knowledge in many areas. The issue includes many
important pieces of work that have the potential to be highly
cited. Each of the papers in the issue contributes to our
knowledge of the functioning of these diverse ecosystems,
and as a whole they demonstrate the sheer diversity of func-
tioning in Amazonian Basin forests, as well as pointing to
some commonalities in their emergent properties, such as
total primary productivity. Importantly, the studies included
in the issue raise a number of intriguing questions, includ-
ing: Why do terra firme forests allocate so much of their
NPP to roots? Why are forests at the rainforest–savanna
ecotone so dynamic? Why do blackwater floodplain forests
take so long to recover from fire? Such questions should
inspire follow-on research that will further deepen our
understanding of Amazonian and Andean ecosystems.
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