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                                                                ABSTRACT 

 

The primary objective of this study was to evaluate and map the land cover dynamics that had 

taken place in the KCA over the past three decades as a result of the changes in land use and 

land tenure systems. To analyse these changes, change detection techniques based on remote 

sensing data (Landsat TM and ETM+) were used. The change detection algorithms that were 

adopted for this study include Principal Component Analysis, Univariate NDVI Image 

Differencing and image classification analysis. These methods were quite complementary in 

their results. The PCA helped in the determination of areas of possible changes, the Image 

differencing algorithm was able to highlight the land cover change trajectories and the Post-

classification approach was able to highlight the trends in land cover changes in each land 

cover type in the area. 

Through the knowledge gained during fieldwork and by overlaying the land use map of the 

area onto the results of these change detection algorithms, the study was able to link the 

observed land cover dynamics to the changes in land use systems in the area. Notable among 

the shift in land use practices which contributed to the observed land cover changes, mainly 

the introduction of cultivation agriculture in the area by immigrating cocoa farming 

communities-leading to the clearance of forests to give way to farms, mainly in close 

proximity to the Kakum-Attandanso forests. 
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                                                         CHAPTER ONE 

                                 INTRODUCTION AND THE STUDY AREA. 

1.1 Introduction 

Tropical forests provide vital ecosystem services and resources such as timber, medicinal 

plants, livelihood for their sustainable use, protection of vital watersheds, and also serve as a 

vital habitat for a large number of important fauna and flora, of high scientific value, without 

which   they   will   go   extinct.  Malhi   et   al.   (2010)   points   out,   “tropical   forests   have   a   major  

influence on global patterns of biodiversity, ecosystem ecology, productivity and 

biogeochemical   cycles,   but   they   remain   understudied”.   According   to   FAO   (2005)   we   are  

losing about 50,000 plant and animal species as a result of depletion of tropical forests.  

Ghana’s  high-biomass tropical rainforest is in a critical state as it continues to decline at an 

alarming rate of 2.2% yearly (FAO, 2010). Its service of supporting diversity of wildlife and 

provision of important products to local communities is seriously threatened. Essentially, 

rather  than  serving  as  a  net  carbon  ‘sink’,  it  is  becoming  a  carbon  ‘source’  instead- majorly 

due to deforestation. Gibbs et al. (2007) averred that a majority of atmospheric carbon is 

sequestered in tropical forests from the aboveground tissues (e.g. trees) with secondary stocks 

lodged in soils and coarse woody debris. 

One technology which offers considerable promise for monitoring land cover change is 

satellite remote sensing. This observation technology provides globally consistent, repetitive 

measurements of  earth surface conditions relevant to climatology, hydrology, oceanography 

and land cover monitoring. One mission in particular, the Landsat Series begun in 1972, was 

designed and continues to operate with the objective of tracking changes in land cover 

conditions (Masek et al., 2000). The high spatial resolution and regular revisit times of the 
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Landsat mission are well suited to studies of national, regional and global land cover change. 

Rather than simply showing the gross change over a long period, these satellite time series 

can record the variability of land cover dynamics in space and time, permitting rigorous 

analyses. 

One way of assessing land cover land use change using remote sensing and GIS is by way of 

Change Detection. This approach refers to the identification and location of changes in the 

state of an object or phenomenon through the examination of the changes in radiance values 

between sets of multi-temporal satellite images (Wang, 1993). The basic premises of remote 

sensing change detection are that changes in land cover results in changes in radiance values, 

and such changes from land cover are larger when compared to radiance changes caused by 

other factors (Mas, 1999). Change detection is also used as an evaluation tool for 

management practices, since changes to the environment can also reflect how the land has 

been managed (Brothers and Fish, 1978). To detect land cover change, a comparison of two 

or more satellite images acquired at different times can be used to evaluate the temporal or 

spectral reflectance differences that have occurred between them (Lunetta and Elvidge, 

1998). 

This study therefore sought to evaluate the land cover changes that have occurred in KCA 

over the past three decades using the integration of remote sensing and GIS applications. 

1.2 Research question 

What are the trajectories of land use changes in the Kakum forest and surrounding landscape? 
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1.3 Primary aims & specific objectives 

This study aims to evaluate the land cover dynamics that had taken place in the Kakum forest 

area over the past three decades as a result of the changes in land use. The specific objectives 

of the project however will include: 

(1) To classify available satellite images of the Kakum forest and use the classification 

maps to identify the trends of change in land cover type. 

(2) To analyze and map land cover change trajectories in the Kakum forest ecosystem 

and the surrounding landscape. 

(3) To identify areas of the Kakum forest landscape that had undergone significant land 

cover changes. 

(4) To evaluate drivers of land use changes in the Kakum forest and the surrounding 

landscape. 

1.4 Study Area:  

1.4.1 Overview 

Ghana has four distinct geographical regions. The Low plains stretch across the southern part 

of the country. To the north of these low plains lie three regions – the Ashanti Uplands, the 

Akwapim-Togo Ranges and the Volta Basin. The High plains, which is the fourth region, 

occupy the northern and northwestern sector of the country. 

The Kakum tropical rainforest, which forms the study area for this project falls within the 

Ashanti Uplands, the Akwapim-Togo Ranges and the Volta Basin and contains remnants of 

Ghana’s   tropical   rainforest  belt.  This   is  broken  by  heavily  forested  hills,  many   streams  and  
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rivers.  It  extends,  northward  from  the  shore  near  the  Cote  d’Ivoire  frontier,  where  most  of  the  

country’s  cocoa,  minerals  and  timber  are  produced.  

The Kakum tropical rainforest, which forms the study area for this project falls within the 

Ashanti Uplands, the Akwapim-Togo Ranges and the Volta Basin and contains remnants of 

Ghana’s   tropical   rainforest belt. This is broken by heavily forested hills, many streams and 

rivers.  It  extends,  northward  from  the  shore  near  the  Cote  d’Ivoire  frontier,  where  most  of  the  

country’s  cocoa,  minerals  and  timber  are  produced.   

The Kakum forest consists of the Kakum National Park in the southern portion and the Assin- 

Attandanso resource reserves, these lie within latitudes 5°20´ and 5°40´ north and longitudes 

1°30´ and 1°51´ west, resulting in a block of moist-evergreen forest approximately 366km2, 

and together known as the Kakum Conservation Area (KCA) (Fig. 1.1). The KCA was 

gazetted in 1992 and falls within the jurisdiction of the Twifo Heman Lower Denkyira, Assin 

South, Assin North and Abura Asebu Kwamankese Districts. The mean annual rainfall in the 

area is between 1,500 and 1,800mm a year. This tends to fall in two peak seasons, the major 

rains falling from May to July and the minor rains falling from September to December. The 

dry season extends from January through to April. During the year, the temperature varies 

between 10°C and 32°C, while the average humidity is about 85%. The vegetation of the area 

is typically a moist evergreen forest type. There are a number of small rivers and streams that 

drain south-eastwards towards the sea, westwards and northwards into the Pra River and 

eastwards into other more minor rivers. The Kakum River serves as a source for much of the 

water supply for the city of Cape Coast. 

1.4.2 Administrative Characteristics 

The KCA is located in the administrative boundaries of three districts, namely Komenda 

Edina Eguafo Abirim District, Twifo Heman Lower Denkyira District, and Assin North 



 

5 
 

District. Official records of the 2000 population census and the Wildlife Division of the 

Forestry Commission of Ghana indicate that the area contains about 400 fringe communities 

and a total population of about 93,562.  

In terms of forest and park management, the district assemblies are only responsible for 

creating awareness on activities such as poaching, bush burning, etc., which threatens 

adjoining forests and parks within their jurisdiction. All other forest management activities 

are left in the hands of the Wildlife Division and other appropriate state authorities.  

1.4.3 Major Land Uses around the KCA 

Major land uses in the KCA include farmlands and village settlements, with both subsistence 

and commercial agriculture taken prime place. Cash crops that are commonly cultivated in 

the area include cocoa, oil palm and citrus. All these land uses mainly occur outside the 

protected forests of the Kakum National Park and the Attandanso forests. 
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  Figure 1.1 Map of Ghana showing KCA      Figure 1.2 Area Extent of the KCA 

 

1.5 Layout of the dissertation. 

Apart from chapter one, this dissertation consists of five more chapters. Chapter two gives an 

overview of the datasets used in this study. It also highlights some of the significant image 

pre-processing  operations   that  were  undertaken   to  make   the  data   “ready”   for   the   analytical  

stages. Chapter three presents the results and a discussion of the first objective of this study 

(i.e. an attempt to detect areas of possible land cover changes within the study area). 

Chapter four addresses the second objective. It presents the results and the discussion of the 

findings of NDVI image differencing that was used to discern the land cover change 

trajectories that had occurred in the area. In chapter five, results of classification of the 

satellite images are presented. A discussion into the trends in land cover changes in each land 
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cover type is also presented in this chapter. Finally, chapter six outlines the general 

conclusions that were drawn from this study and presents some of the recommendations for 

further research. 
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                                                         CHAPTER TWO 

LAND COVER CHANGE DETECTION: MATERIALS AND METHODOLOGY                     

                                                         REVIEW 

2.1. Introduction. 

Ecosystems are continuously changing, where change is defined as   “an   alteration   of   the  

surface   component   of   vegetation   cover”(Milne,   1988).   The   rate   of   change   can   either   be  

dramatic and/or abrupt, as exemplified by fire, or subtle and/or gradual, such as biomass 

accumulation. Change can therefore be seen as a categorical variable (class) or in a 

continuum. Authors generally distinguish between land-cover conversions i.e. the complete 

replacement of one cover type from another, and land-cover modification, i.e. more subtle 

changes that affect the character of the land cover without changing its overall classification 

(Coppin et al, 2004). 

From a conceptual perspective, land cover change detection permits the identification of 

long-term trends in time and space and the formulation of policy in anticipation of problems 

that   accompany   changes   in   land   use.   Timely   and   accurate   change   detection   of   the   Earth’s  

surface features is extremely important for understanding relationships and interactions 

between human and natural phenomena in order to promote better decision making. Remote 

sensing data sources have been extensively used for change detection in recent decades. In 

remote sensing context, change detection has been defined as the identification and location 

of changes in radiance values between sets of multi-temporal images (Wang, 1993). 

A number of land cover change detection techniques are currently in use in the field of 

remote sensing. Luneta and Elvidge (1999), groups these techniques into two main 

categories: (1) post classification comparison techniques and (2) enhancement change 
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detection techniques. Post-classification techniques involve the production and subsequent 

comparison of spectral classifications for the same area at two or more different periods while 

enhancement techniques involve mathematical combination and analysis of images from 

different dates (Richards, 1993). 

Other authors have attached definitions that vary in complexity and, to a certain extent, in 

coverage to these categories. Malila (1980) recognized the categories as change measurement 

(stratification) methods versus classification approaches. Pilon et al (1987) amplified the 

description   of   the   change   measurement   category   to   “enhancement   approaches   involving  

mathematical combinations of multi-date imagery which, when displayed as a composite 

image,  show  changes  in  unique  colours”.  Singh  (1989)  changed  the  focus  slightly  by  centring  

the definitions more on temporal scale: simultaneous analysis of multi-temporal data versus 

comparative analysis of independently produced classifications for different dates. 

Whichever method one chooses to use, both the two approaches have advantages and 

disadvantages. The first approach (comparative analysis of independently produced 

classifications from different dates) has several sources of uncertainty. Aspinall and Hill 

(1997) emphasizes two of them: (1) misregistration of the polygon boundaries (location 

inaccuracy) in the direct classification and, therefore, the presence of border pixels with false 

positive and negative changes and (2) problems derived from classification errors: false 

positive change can be recorded when no change has occurred because a polygon in one or 

both of the two maps is misclassified or false negative changes, when no change is identified 

but a change has taken place. 

In the case of the second approach (simultaneous analysis of multi-temporal data), several 

procedures have been developed, such as image differencing, vegetation index differencing, 

principal components analysis and change vector analysis (Fung and LeDrew, 1987; Lambin 
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and Strahler, 1994). In these procedures, the basic premise is that changes in land cover must 

result in changes in reflectance values, which must be larger than those caused by other 

factors such as differences in atmospheric conditions, sun angle, soil moisture or precise 

sensor calibration. The impacts of some of these factors may be partially reduced by selecting 

image acquisition dates as close as possible for different years used (Serra et al, 2003). 

Nevertheless, there are some problems related to this second approach: (1) most of these 

procedures provide little information about the specific nature of land cover change, (2) the 

threshold technique used to differentiate change from no-change areas is usually not clear 

and, (3) the misregistration between metadata images.  

In the following sections the data sets used in this study are described and a review of the 

methods used is presented. 

2.2. Data set description. 

The data sets that were used in this study included satellite images, GIS databases and GPS 

ground control points. All pre-processing and processing activities were done using the ENVI 

5.0 and ERDAS IMAGINE image processing softwares. 

2.2.1. Satellite Images. 

KCA covers an area of approximately 366 km2, which only required a single image scene 

with a single path and row for the Landsat TM and ETM+ images. The attributes of the 

images used in this study are presented in table 2.1. 

All the images were acquired from the U.S. Geological Survey (USGS) website: 

http://landsat.usgs.gov/ 
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Table 2.1. Description of the satellite images used in this study. 

Image Acquisition  

Date 

Landsat Sensor Spatial Resolution Others 

29/12/1986 TM 5 30 meters Path/Row: 194/56 

S/E:  

01/01/1991 TM 4 30 meters Path/Row: 194/56 

S/E: 44.68 

02/04/2001 ETM+ 7 30 meters Path/Row: 194/56 

S/E: 60.66 

27/04/2013 ETM+ 7 30 meters Path/Row: 194/56 

S/E: 64.05 

 

All the images were taken in the dry months of December, January and April. This ensured 

that errors arising from seasonal differences (vegetation phenology) were minimized. The 

major consideration for selecting these images over others was to have a consistent ten year 

interval between them, with exception of the 1986 image, which was the appropriate earliest 

image.  

2.3. Image pre-processing. 

The primary challenge in deriving accurate natural ecosystem change information is 

representative of the standard remote sensing problem: maximizing of the signal-to-noise 

ratio (Coppin et al, 2004). Inherent noise will affect the change detection capabilities of a 

system or even create unreal change phenomena. The causes of such unreal changes can be, 

among others, differences in atmospheric absorption and scattering due to variations in water 

vapour and aerosol concentrations in the atmosphere at disparate moments in time, temporal 
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variations in the solar zenith and/or azimuth angles, and sensor calibration inconsistencies for 

separate images (Coppin et al, 2004). 

Pre-processing of satellite sensor images prior to actual change detection is essential and has 

as its unique goals the establishment of a more direct linkage between the data and 

biophysical phenomena, the removal of data acquisition errors and image noise, and the 

masking of contaminated (e.g. clouds) scene fragments. Typically, image pre-processing 

consists of a series of sequential operations such as calibration to radiance or at satellite 

reflectance, atmospheric correction or normalization, image registration, geometric 

correction, mosaicking, sub-setting and masking.  

A series of the significant pre-processing operations undertaken in this study are reviewed in 

the following sections. 

2.3.1. De-striping. 

De-striping refers to the application of algorithms to adjust incorrect brightness values to 

values thought to be near correct values (Campbell, 2002). Landsat MSS data sometimes 

exhibit a kind of radiometric error known as sixth line striping, caused by small differences in 

the sensitivities of detectors within the sensor. Within a given band such differences appear 

on the images as   horizontal   banding,   or   “striping”,   because individual scan lines exhibit 

unusually brighter or darker brightness values that contrast noticeably with the background 

brightness   of   the   “normal”   detectors   (Mather,   1999).   Landsat   TM   data   can   suffer   from   a  

similar banding problem. However, the Landsat TM imagery is recorded in 16 detectors per 

band for all non-thermal bands and 4 detectors for the thermal band (Lillesand and Kiefer, 

1996) and hence the problem is minimized. In relatively newer sensors such as ETM+, the 

problem has largely been eliminated due to better satellite stability and the presence of on-

board calibration systems (Mather, 1999).  
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Some of the arguments that have been put forward for de-striping of Landsat MSS imagery 

include: the improvement in the visual appearance and interpretability of the image and equal 

pixel values in the image are more likely to represent areas of equal ground leaving radiance, 

other things being equal. However, other research (Campbell and Liu, 1995) found that de-

striping the image has little impact on the character of the data. 

A variety of de-striping algorithms have been devised. All of these identify the values 

generated by the defective detectors by searching for lines that are noticeably brighter or 

darker than the lines of the remainder of the scene. Among these algorithms are simple along-

line convolution, high-pass filtering and forward and reverse principal component 

transformations (Crippen, 1989), histogram normalization for each scan-lines associated with 

each sensor (Mather, 1999) and image editing in the frequency domain (Srinivasan et al, 

1988). 

After visual inspection of the images used in this study, it was decided that none of the 

images required de-striping.  

2.3.2. Conversion of Digital Numbers to Radiance Values. 

Calculation of radiance values is a fundamental step in putting image data from multiple 

sensors and platforms into a common radiometric scale. This is an essential step in land cover 

change detection studies based on multi-temporal images. In this study two sets of equations 

were used to convert digital numbers (DN) to radiance values. 

For Landsat TM and ETM+ images, the following equation was used for converting DN into 

radiance values (Markham and Chander, 2003): 

 min
max

minmax LQcal
Qcal

LLL 






 


 ……………………………  Equations  (1). 
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Where: 

 Lλ                      =  Spectral  radiance  at  the  sensor’s  aperture  in  Watts/(m2*sr*μm) 

 

Qcal      = the quantized calibrated pixel value in Digital Number (DN). 

 

Qcalmin  =  the  minimum  quantized  calibrated  pixel  value  (DN=0)  corresponding  to  Lminλ. 

Qcalma x= the maximum quantized calibrated pixel value (DN=255) corresponding to 

Lmaxλ. 

Lminλ    =  the  spectral  radiance  that  is  scaled  to  Qcalmin  in  Watts/(m2*sr*μm) 

 

Lmaxλ      =  the  spectral  radiance  that  is  scaled  to  Qcalmax  in  Watts/(m2*sr*μm) 

 

All these values were obtained from the image metadata files. 

Finally, when comparing two or more images, it is advisable to do some normalization to 

reduce between-scene variability that is due to effects like the sun angle and distance between 

the sun and the earth (Pickup et al, 1993). For relatively clear Landsat scenes, converting 

spectral radiance values (from equation 1) to planetary reflectance (equation 2) is commonly 

suggested, taking into account sun angle and distance between the sun and the earth 

(Markham and Barker, 1986). 
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The equation is as follows: 

 sCosEsun
dLPp



*

** 2


 …………………………  Equation  (2) 

           

Where: 

Pp = Unitless planetary reflectance 

Lλ  =  Spectral  radiance  at  the  sensor’s aperture. 

d = Earth-sun distance in astronomical units. 

Esunλ  =  Mean  solar  exoatmospheric irradiances 

θs    =  Solar  zenith  angle  in  degrees. 

However, in this study, the transformation of radiance values to spectral reflectance using 

equation 3 was avoided after it became apparent that the image quality was degraded when 

these calculations were attempted. Therefore, in order to correct for between-scene 

variability, another method was used (i.e. the atmospheric correction method). 

2.3.3. Atmospheric Correction. 

Usually, the presence of atmosphere between the ground and the satellites means that a pixel 

value in remotely sensed image is unlikely to truly represent the ground leaving radiance. 

Radiation   from   the   earth’s   surface   interacts   through   absorption   and   scattering   by the 

atmosphere before it reaches the sensor. The amount of atmospheric interaction/distortion is 

wavelength dependent, with shorter wavelengths experiencing more scattering than longer 

wavelengths (Sabins, 1997). 
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In order to extract quantitative information and compare satellite images, atmospheric 

correction is considered a necessary step. There is relatively a long list of atmospheric 

correction methods of Landsat imagery. Liang et al (2001) classified these methods into the 

following groups: invariant-object, histogram matching, dark object, and the contrast 

reduction. If sufficient information is known about the atmosphere at the time of image 

acquisition, then atmospheric correction can be performed through the use of models such as 

LOWTRAN/MODTRAN and 6S (Chavez, 1996) and QUAC application (ENVI, 2012) 

However, in this study, such detailed meteorological information was lacking and hence a 

simplistic atmospheric correction method that exploited data contained in the image itself was 

used.  

The dark pixel subtraction (DOS) was used as a direct and effective method for correcting 

atmospheric effects. The principle behind the dark object subtraction also known as the 

histogram minimum method (HMM) is that some dark objects (e.g. deep water or dark dense 

vegetation) in the image will have zero or near zero reflectances in certain wavebands. 

However, due to atmospheric scattering, the minimum values of these dark pixels are usually 

not zero, but some larger value (Campbell, 2002). These minimum values for each band are 

then assumed to represent the contribution of atmospheric scattering. Therefore, if the 

minimum is subtracted for each band, the lowest value of each band is set to zero, assuming 

zero to be the correct signature for dark objects in the absence of atmospheric scattering. 

In this study, water features were selected and an area of interest (AOI) identified and the 

mean values of each band in these areas of interest calculated. These mean values were then 

used in the dark object subtraction procedure. However, it is important to note that care 

should be taken when choosing   the   dark   objects   as   some   of   these   objects   are   not   “dark  

enough”   and   could  actually   have   reflectance   values   that   are   not   zero   e.g.  water   containing  

sediments. This was guarded against in this study by inspecting various dark objects and only 
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choosing those that had the minimum mean values in most of the bands for the atmospheric 

correction procedure. The atmospheric correction procedure was executed using the ENVI 

5.0 image processing software (ENVI, 2012). 

2.3.4. Geometric Correction. 

Geometric correction addresses the errors in the relative positions of pixels. The images used 

in this study were acquired already systematically corrected for sensor geometry and terrain 

variations to Level 1G by the U.S. Geological Survey (USGS). Systematic correction refers 

to the nature of geometric correction applied to images by employing a correction algorithm 

that models the spacecraft and sensor, using data generated by onboard computers during 

imaging events (Landsat 7, 2003). However, it is worth noting that in that correction there 

were no ground control points (GCPs) or relief models applied to obtain absolute geodetic 

accuracy (Landsat 7, 2003) and hence the algorithms used could have residual errors. To 

ensure that there were minimal errors, the images were visually   inspected   through  “swipe”  

functionality in ENVI and it was concluded that the correction undertaken by the USGS was 

acceptable as all the images showed perfect registration to each other. 

2.4. Image Processing. 

The previous section (Section 2.3) reviewed the image pre-processing operations that were 

undertaken  to  make  the  images  “ready”  for  the  essential  image  analysis  considered  necessary  

in achieving the objectives of this study. In this section, a review of the image analysis 

operations employed in this study is presented. 

2.4.1. Principal Components Analysis. 

Principal components analysis (PCA) also referred to as Karhunen-Loeve (K-L) 

transformation is a commonly used statistical method for many aspects of remote sensing 
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image analysis, including estimation of the underlying dimensions of remotely sensed data 

and data enhancement for land cover change detection (Fung and LeDrew, 1987). PCA is 

based on the notion that most remotely sensed images exhibit high inter-band correlations.  

The theory of PCA is that two normally distributed bands of image data will form an 

elliptical shape if the bands are correlated and a circle if they are not, when data are plotted in 

a scattergram. The line that corresponds to the major axis of the ellipse becomes the first 

principal component and it represents the widest transect of the ellipse and measures the 

largest variation within the data (Mather, 1999). The eigenvalue of the principal components 

(PC) is the length of the transect measured in units of variance and the eigenvector of the PC 

are the coordinates defining its direction. The second PC is the line through the ellipse that is 

orthogonal to PC1 and describes the largest variance in the data that is not already described 

by PC1. In an n-dimensional spectral space, a hyper-ellipsoid shape is created when there are 

more than 3 dimensions to the data set, and each successive PC beyond PC2 will still be 

perpendicular  to  all  other  PC’s  and  will  account  for  a  decreasing  amount  of  the  total  variation  

in the data (ENVI, 2012). 

In operational terms, the principal component transformation can be divided into three steps 

(Richards, 1984): 

(i) The images are first registered to form a single multi-band image containing all the 

bands from each date. 

(ii) Next follows the derivation of the variance-covariance matrix, which is used to 

determine the eigenvectors (the coefficient to be applied to each band in order to weight its 

inclusion in the new image) 
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(iii) The PCA then identifies the optimum linear combination of all the bands that can 

account for the image to create a new image. The Linear combination is in the form: 

PC1= C1X1+C2X2+C3X3+C4X4…………….  Equation (3) 

Where: 

X1=the pixel values in band 1. 

C1= the coefficient applied to band 1 (Eigenvectors). 

PC= the principal component. 

The maximum number of principal components (PCs) that can be produced from one image 

is equal to the number of bands in the image and each PC will be statistically independent 

from all other PCs.  

PCA has been used in change detection studies since it enhances regions of change in an 

image because of the high correlation that exists between data for regions of little or no 

change and low correlation between data for regions of significant change. Areas of little or 

no change will therefore be mapped to the first PC and areas of change will be mapped to 

higher order PCs (Siljerstron and Lopez, 1995).  

2.4.2. Normalized Difference Vegetation Index (NDVI) Computation. 

Vegetation indices (VIs) based upon digital brightness, have been extensively used to study 

vegetation biomass or vigour (Tucker, 1979; 1986). The indices are based on the premise that 

chlorophyll in actively growing vegetation is a strong absorber of red radiation, and the cell-

wall structure of healthy leaves strongly reflects Near Infrared (NIR) radiation. Therefore, 

greater photosynthetic activity will result in lower reflectance in the red band and higher 

reflectance in the NIR. It is for this reason that the red and the NIR regions of the 
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electromagnetic spectrum are primary bands utilized in remote sensing of vegetation. By 

combining these two spectral regions in a ratio or difference, the NDVI, the sensitivity to 

photosynthetic activity is enhanced. While a variety of vegetation indices have been used 

over the past decades, the NDVI is the most commonly applied index:  

             REDNIR
REDNIRNDVI





    …………………………  Equation (4). 

By normalizing the difference between the channel values, NDVI values are scaled to lie in 

the range between –1 to +1. High positive values of NDVI correspond to dense vegetation 

cover whereas negative values are usually associated with bare soils, snow, clouds or non-

vegetated surfaces (Oindo and Skidmore, 2000). 

In this study, the NDVI values were calculated using the ENVI Spectral function using the 

following equations: 

For Landsat TM and ETM+: 

 34
34

BandBand
BandBandNDVI





  …………………………….. Equation (5). 

2.4.3. Classification. 

The classification process has been described as consisting of two stages (Mather, 1999). The 

first is the recognition of categories of real-world objects. In the context of remote sensing of 

land surface these categories could include, for example, woodlands, water bodies, 

grasslands, and other land cover types depending on the geographical scale and nature of the 

study. The second stage in the classification process is the labelling of the entities (normally 

pixels) to be classified. The process of classification often requires the user to: (1) determine 

a prior the number and nature of the categories in terms of which the land cover is to be 
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described and, (2) assign numerical levels to the pixels on the basis of their properties using a 

decision making procedure, usually termed a decision rule or classification rule. There are 

three distinct kinds of classification that are in use in the field of remote sensing: 

unsupervised, supervised and hybrid classification. A brief review of the classification 

methods used in this study is presented below. 

2.4.3.1. Unsupervised Classification. 

It is defined as the identification of natural groups, or structures, within multi-spectral data. 

The most widely used algorithm for performing unsupervised classification is the Iterative 

Self-Organizing Data Analysis Technique (ISODATA). ISODATA produces results that are 

often considered to be superior to those derived from basic minimum distance classifiers 

(Campbell, 1996). ISODATA requires the user to input the maximum number of classes 

desired, the maximum number of iterations for the algorithm, and the threshold value for the 

average inter-centre Euclidean distance. It then assigns pixels in an image to one of the N-

clusters in multidimensional feature space and calculates the mean value for each spectral 

band. Furthermore, it calculates the spectral distance between each candidate pixel and the 

mean for the cluster  it   is  currently  assigned  to.  If  that  pixel’s  value  is  closer  to  the  mean  of  

another cluster, then it is reassigned to that other cluster. The pixel reassignment and 

calculation of all cluster means process, is repeated until the total number of iterations 

specified has been completed (ENVI, 2012).  

2.4.3.2. Supervised classification. 

Supervised classification is more closely controlled than an unsupervised classification. It has 

been defined informally as the process of using samples of known identity (i.e. pixels already 

assigned to informational classes) to classify pixels of unknown identity (i.e. to assign 

unclassified pixels to one of the several informational classes) (Campbell, 2002). Knowledge 
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of the data, the classes desired, and the algorithm to be used is required before training is 

done. By identifying patterns in the imagery, the computer system is trained to identify pixels 

with similar characteristics. There are a several algorithms for performing supervised 

classification, but the most commonly used method is the maximum likelihood classifier. It is 

also considered to be the most accurate of the classifiers compared to other algorithms 

(ENVI, 2012).  

2.4.3.3. Hybrid Classification. 

A hybrid classification also referred to as guided clustering, involves a combination of both 

unsupervised and supervised classification. An unsupervised classification is initially 

performed to identify spectral differences within the data and then a supervised classification 

is performed using areas of the unsupervised classification as training data in addition to 

ancillary ground-truth. Among the advantages of this approach is its ability to help the 

analyst to identify the various spectral subclasses representing information class 

“automatically”   through   clustering. At the same time the process of labelling the spectral 

clusters is straight forward because these are developed for one information class at a time. 

Hybrid classifiers have also been observed to be of particular value in the analysis where 

there is complex variability in the spectral response patterns of individual cover types, a 

condition that is quite common in vegetation mapping (Lillesand and Kiefer, 2000). 

2.5. Accuracy Assessment. 

Accuracy assessment allows a researcher to compare certain pixel values in the thematic 

raster layer (original image) to the reference pixels, for which the class is known. This is an 

organized way of comparing the classification with ground-truth data, a previously tested 

map, aerial photos, or other data of the study area. Accuracy assessment is therefore 
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important for understanding the developed results and employing these results for decision-

making. 

The most common accuracy assessment method is the preparation of a classification error 

matrix (or confusion matrix). Error matrix compares, on a category-by-category basis, the 

relationship between known pixel reference data and corresponding results of an automated 

classification. The most common elements of the error matrix accuracy assessment include 

overall accuracy,  producer’s  accuracy,  user’s  accuracy  and  kappa  coefficient  (Lillesand  and  

Kiefer, 2000).      
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                                                     CHAPTER THREE 

DETECTION OF AREAS OF POSSIBLE LAND COVER CHANGES IN THE KCA. 

3.1. Introduction. 

Temporal changes in landscape composition and structure result from biological, physical 

and human influences. Knowledge of these changes and their driving processes provides 

insight into regional landscape dynamics. Several methods have been used in the field of 

remote sensing to study these dynamics in landscapes. The choice of what method to use in 

such studies is highly subjective and is linked to the objectives of that particular study. In the 

present study, the principal component analysis was adopted, for the reason that it has been 

shown to perform better in land cover change detection studies in areas where large 

proportions belong to no change (Richards, 1984), as is assumed to be the case in most 

tropical forest ecosystems and areas of significant change clearly noticeable. 

Principal components analysis (PCA) is a multivariate analysis technique used for data 

reduction. It concentrates information pertaining to statistically minor modifications in the 

state of the natural ecosystems (minor contrasted to the entirety of the image) in orthogonal 

components, producing uncorrelated differences. PCA has been used in land cover change 

detection studies due to the fact that it enhances regions of change in an image because of 

high correlation that exists between data for regions of little or no change and low correlation 

between data for regions of significant changes. Therefore, areas of little or no change will be 

mapped to the first principal component (PC) and areas of change will be mapped to the 

higher order PCs (Siljerston and Lopez, 1995). 
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Several studies have used PCA in land cover change detection with varying degrees of 

success. For example, Richards (1984) applied normal PCA approach to two-date MSS 

imagery to monitor bush-fire damage and vegetation re-growth over extensive areas in 

Australia. He found out that, provided the major portion of the variance in the multi-temporal 

sequence was associated with correlated land cover, areas of localized change were enhanced 

in some of the lower components, particularly PCs three and four. Ingebritsen and Lyon 

(1985) did exactly the same thing to detect and monitor vegetation changes around a large 

open-pit uranium mine in Washington and wetland area in Nevada. Under the assumption 

that the two original images both had an intrinsic dimensionality of two, they found four 

meaningful PCs in their study. These included PCs representing stable brightness, stable 

greenness, change in albedo and change in greenness. The latter component proved to be well 

related to changes in vegetation cover and insensitive to variations in slope and aspect. 

Two approaches to PCA are currently in use in remote sensing change detection studies: (1) 

independent transformation PCA and (2) merged data transformation. Independent 

transformations involve undertaking PCA on each single image and thereafter comparing 

their results. Merged data transform on the other hand involves superimposing images before 

hand and then performing PCA of the merged data (Estes et al, 1982). Apart from these two 

approaches, during implementation of PCA, one can choose to either use the entire bands of 

the image or a selection of bands. Studies by Coppin and Bauer (1994) found that the use of 

selected bands was more successful in discerning areas of change in their study of temperate 

forest cover in the north-central USA. They particularly found the second principal 

component of vegetation index band pairs to be an excellent indicator of change. Kwarteng 

and Chavez (1998) used similar selective PCA approach to successfully detect and map 

surface changes dealing with urban development, vegetation growth and coastal and sand 

sheet surface differences. 
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It is worth noting that the exact nature of the principal components derived from multi-

temporal datasets in land cover change detection studies are still difficult to ascertain. 

Suggestions that have been made that could help in overcoming this problem include a 

thorough examination of the eigenstructure of the data and visual inspection of the combined 

images. Another way is to look for the presence of areas with significant departures from the 

grey scale in the later PCs  (Fung and LeDrew, 1987). Finally, to avoid drawing the wrong 

conclusions, knowledge of the study area is desirable. 

3.2. Methodology 

The merged data PCA approach was adopted whereby pairs of images were first merged 

together using the layer-stack function of ENVI 5.0 (IDL 8.2)  image processing software. 

However, not all the bands of each image were used in the PCA operation, but a selection of 

specific bands 2, 3 and 4 for the Landsat TM and ETM+ images. The reason for this choice 

of bands was the fact that they are the bands used in characterization of vegetation activity, a 

principal focus of this study. 

The principal components analysis was then performed on the merged images according to 

the   procedures   outlined   in   the   ENVI   users’   guide   (ENVI,   2012).   The   following   sections  

present the results and discussions of the PCA operations. 

3.3. Results 

3.3.1. Principal Components Analysis of Multidate 1986 and 1991 Images. 

A merged PCA of dates 1986 TM and 1991 TM image was performed to try to identify areas 

that had undergone significant land cover changes in the KCA.  Bands 2, 3 and 4  from the 

TM images were utilized in the process.  
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Six principal components (PCs) were identified as shown in Figure 3.3. The eigenvectors and 

the eigenvalues of the PCA of the merged 1986 TM and 1991 TM images are given in Table 

3.1 and 3.2 respectively. 

Table 3.1 Eigenvectors (Loadings) for PCA of the Merged 1986 TM and 1991 TM images  

Merged 

Bands 

Original 

bands 

PC1 PC2 PC3 PC4 PC5 PC6 

1 TM2 0.04741 -0.06776 -0.12832 -0.68512 -0.27438 0.657278 

2 TM3 0.034309 -0.0141 -0.17657 -0.68993 0.221171 -0.66523 

3 TM4 0.37351 -0.88204 0.282742 0.012202 0.002577 -0.04888 

4 ETM2 0.137209 -0.13672 -0.65037 0.187789 -0.6701 -0.23495 

5 ETM3 0.075625 -0.19282 -0.66847 0.137494 0.651223 0.259331 

6 ETM4 0.912425 0.401666 0.050771 0.016912 0.051678 0.02471 

 

Table 3.2 Eigenvalues from the PCA of the Multidate 1986 and 1991 Images. 

Eigenvalues Percentage Variance (%) 

                                                                                                         

44.26241 

 

73.59 

7.073412 4.25 

4.644638 2.79 

3.089724 1.86 

0.578512 0. 35 

0.496841 0.30 
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The first principal component (PC1) is very highly loaded in the red and green channels 1,2,4 

and 5 and is responsible for 73.59% of the variance. The fact that this PC is highly loaded in 

the red and green channels can be inferred to mean that it is the PC that represents the overall 

brightness of the study area (Fung and LeDrew, 1987).  

The second (PC2) and the fourth (PC3) components seem to express the differences between 

the two  images  as  can  be  seen  from  the  algebraic  signs  of  their  loadings.  In  these  two  PC’s  all  

the channels (apart from channel 1 in PC3) that are negatively loaded in one date are 

positively loaded in the other and vice-versa (Figure 3.1). Visual inspection of these  PC’s   

support  the  assertion  that  areas  of  land  cover  change  seem  to  be  mapped  on  these  two  PC’s  as  

there exists areas that have either heightened dark tones or elevated brightness, a 

phenomenon that has been associated with areas representing change in land cover change 

detection studies using principal component analysis (Byrne et al 1980; Fung and LeDrew, 

1987). Note that PC2 is considered to be highlighting areas of change in the present study, 

since not all the bands were used but a selection of vegetation indices bands. Other studies 

have shown that this PC particularly maps areas of vegetation change when a selection of 

vegetation indices bands is used in PCA (Kwarteng and Chavez, 1998). 

Principal component three (PC3) showed higher loadings in the infrared channels 3 and 6. 

This represents a summary of the multi-date infrared reflectance and can be inferred to 

symbolize the overall greenness of the study area. PC5 was much harder to interpret as it 

loadings did not have any inherent pattern and visual inspection too did not yield any 

significant patterns, though they could be interpreted to represent noise in the data. 
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Fig. 3.1: Result of Principal Component from Multidate 1986 and 1991 Image 

 

PC1       PC2 

 

PC3            PC4 
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                                 PC5                PC6 

 

 

3.3.2. Principal Components Analysis of Merged 1991 and 2001 Image. 

The merged 1991 TM and 2001 ETM+ image of the KCA was analyzed using PCA. In this 

analysis, a selection of bands (bands 2,3 and 4) was used from the two images. The resulting 

six principal components (PCs) are shown in figure 3.2. The resultant eigenvectors and 

eigenvalues are presented in table 3.3 and 3.4 respectively. 

Looking at the eigenvectors of the various PCs, it is evident that PC1 has high positive 

loadings in the green and red channels 1,2,4 and 5. These high loadings in the green and red 

channels suggest that this PC mainly represents the general brightness of the vegetation 

conditions in the KCA. It also explains most of the variance (71.56 %) of the merged data set.  

 

Table 3.3 Eigenvectors (Loadings) for PCA of the Merged 1991 TM and 2001 TM images  

Merged 

Bands 

PC1 PC2 PC3 PC4 PC5 PC6 

1 0.041321 -0.0209 -0.12137 -0.68473 -0.10647 0.709182 
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Table 3.4 The Eigenvalues from the PCA of the Multidate 1991 and 2001 Images. 

Eigenvalues Percentage Variance (%) 

89.97142 71.56 

29.07844 23.13 

4.691731 3.73 

1.417785 1.13 

0.566711 0.45 

 

Fig. 3.2: Result of Principal Component from Multidate 1991 and 2001 Image.

  

                                         PC1                                                                                      PC2 

2 0.028572 -0.00786 -0.05371 -0.71405 0.0233 -0.69701 

3 0.197767 -0.19895 -0.94848 0.133875 -0.02793 -0.05464 

4 0.702736 0.005961 0.176495 0.053051 -0.68433 -0.06208 

5 0.678813 0.140727 0.084263 -0.02132 0.712444 0.065399 

6 0.061143 -0.96958 0.210988 -0.00969 0.107036 0.010687 
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3.3.3. Principal Components Analysis of Merged 2001 and 2013 Image. 

The resulting six principal components (PCs) are shown in figure 3.3. The resultant 

eigenvectors and eigenvalues are presented in table 3.5 and 3.6 respectively. 

Looking at the eigenvectors of the various PCs, it is evident that PC1 has high positive 

loadings in the green and red channels 1,2,4 and 5. These high loadings in the green and red 

channels suggest that this PC mainly represent the general brightness of the vegetation 

conditions in Laikipia district. It also explains most of the variance (83.51 %) in the merged 

data set.  

 

Table 3.5 Eigenvectors (Loadings) for PCA of the Merged 2001 ETM and 2013 ETM images  

Merged 

Bands 

PC1 PC2 PC3 PC4 PC5 PC6 

1 0.044663 0.202062 -0.68954 -0.00842 0.189986 0.667497 

2 0.043965 0.210068 -0.65434 0.131576 -0.16796 -0.69301 

3 0.004953 -0.07126 -0.11065 -0.98605 -0.03532 -0.09546 

4 0.697227 0.119315 0.094952 -0.02283 0.677143 -0.1777 

5 0.654088 0.245787 0.102107 -0.01903 -0.68405 0.181768 

6 0.286516 -0.91396 -0.25436 0.097162 -0.08941 0.021416 

 

Table 3.6 The Eigenvalues from the PCA of the Multidate 2001 and 2013 Images. 

Eigenvalues Percentage Variance (%) 

3171.552 83.51 
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361.4638 9.52 

175.1787 4.61 

84.95453 2.24 

3.145506 0.08 

1.346705 0.04 

 

Fig. 3.3: Result of Principal Component from Multidate 2001 and 2013 Image. 
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                            PC5                                                     PC6 

3.4. Discussions 

The PCA of the three sets of merged data was able to detect areas that had experienced 

possible land cover changes in the KCA over the study period. 

Starting with the results of the PCA of the merged data of 1986 and 1991 images, it was 

evident that a number of areas showed characteristics associated with land cover changes in 

specifically two principal components (PC2 and PC4). Both visual inspection and algebraic 

loading patterns of these two PCs proved crucial in making judgments that they were the PCs 

most likely representing areas of land cover change in the district.  

Using the data collected during fieldwork coupled with the existing land use map (Figure 

1.3), possible reasons for the observed areas of possible land cover change could be deduced. 

For example, the regions in the northwestern parts of the main protected forest (the Kakum-

Attandanso forests) showed heightened brightness meaning some form of change had taken 

place in these areas. During fieldwork, it was noted that this area is currently under intensive 

cultivation agriculture. Therefore, the changes that appear to be detected by the results of the 

PCA in these areas could be linked to the farming activities that have been introduced in 
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these areas leading to clearance of forests and other vegetation types to give way for 

cultivation lands. 

Other regions that showed some elements of possible land cover changes include the areas 

around Kakum forest in the southeastern part of the area. It was established that this region 

has been and is still under communal cocoa agricultural activities. One possible explanation 

for the observed land cover changes in this area could be due to high cocoa and other cash 

crops price increases, incentivising farmers and especially landowners to open up more 

previously vegetated lands for agriculture.  

Turning to the PCA results of the merged data of 1986 and 1991 images, more areas of 

possible land cover changes were discerned. PC2, PC3 and PC4 in particular seemed to 

highlight most of these areas. Ancillary data collected during fieldwork was used to try and 

infer the causes of the observed areas of possible land cover changes. The southwestern parts 

of the area were again highlighted in the results of the PCA of these two dates. As was 

explained earlier, this is a region that has been experiencing intensified cultivation agriculture 

from the ever growing number of immigrant cocoa-agricultural communities in the area. 

Therefore, it would be right to observe that the possible causes of the changes being depicted 

in the PCA results are due to the fluxes in land use activities (clearing of vegetation to give 

room to cultivate land) in this region. 

3.5. Conclusion. 

It is evident that the principal component analysis (PCA) of the merged data of the satellite 

images was able to detect areas that might have had some forms of land cover changes over 

the study period in the KCA. Most of these changes had links with the land use activities 

being practiced in the area (Figure1.1). Areas such as those that had undergone intensification 

of agriculture were highlighted as having experienced some form of land cover changes. 
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It can be concluded that the changes in land use activities in KCA outside the protected 

Kakum and Assin-Attandanso forests have had detectable changes in its land cover status. 

However, until further analyses are undertaken to ascertain the characteristics of these 

changes, it is hard at this stage to state the conclusive reasons for them. Nevertheless, the 

results prove that PCA is a quick and viable algorithm that can be used to detect areas of 

change in vast ecosystems such as the tropical forests. This can be of great importance in 

helping to identify areas to focus on during detailed studies in such vast ecosystems. 
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                                                           CHAPTER FOUR 

           DETERMINING LAND COVER CHANGE TRAJECTORIES IN THE KCA 

4.1. Introduction 

The principal components analysis discussed in chapter 3 acted as a general indicator of 

which areas in the KCA might have experienced land cover changes over the study period. 

However, from the PCA alone, it is hard to establish the characteristics/trajectories of these 

changes (i.e. whether they were increases in land cover or decreases in land cover). 

Therefore, to ascertain these trajectories, the univariate NDVI image differencing technique 

was adopted. 

The univariate image differencing has been suggested to be the most widely used change 

detection algorithm (Coppin et al, 2004). It involves subtracting one date of original or 

transformed (e.g. vegetation indices) imagery from a second date that has been precisely 

registered  to  the  first.  With  “perfect”  data  this  would  result  in  a  dataset  in  which  positive  and  

negative values represent areas of change and zero values represent no change. 

Several studies have used this algorithm in change detection with varied success. For 

example, Lyon et al (1998) implemented NDVI differencing and found it to be a better 

vegetation change detection technique for monitoring deforestation and loss of vegetation. 

Nelson (1983) delineated forest canopy changes due to gypsy moth defoliation in 

Pennsylvania more accurately with vegetation index differencing than with other single band 

differencing or band rationing. Banner and Lynham (1981) on the other hand did not get good 

results when they used this algorithm in trying to delineate forest cutover owing to the 

sensitivity of NDVI to grass growth and the development of other vegetation in the clear-

cuts. However, they found it useful in monitoring vegetation composition within the cutovers. 
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Serneels et al (2001) applied double univariate image differencing in a spatial-contextual 

approach to successfully separate anthropogenic changes from climate variability in a 

savanna environment in Kenya. 

To improve the performance of this algorithm, several data pre-processing methods have 

been suggested. Hame (1986) suggested histogram matching and Yasuoka (1988) suggested 

band-to-band normalization before differencing TM data so as to yield bands with 

comparable means and standard deviations and to reduce scene-dependent effects. Coppin 

and Bauer (1994) suggested a standardization of the differencing algorithm to minimize the 

occurrence of identical change values depicting different change events. In the present study, 

the normalization of the NDVI images was undertaken by use of linear regression equation 

resulting from the mean NDVI values of the pseudo invariant features (PIFs) in the images. 

4.2. Methodology. 

4.2.1. Univariate NDVI image differencing. 

The univariate NDVI image differencing analysis was performed using NDVI images of all 

the different dates. Various studies have adopted different approaches in NDVI image 

differencing analysis.  Serneels et al (2001) for example, in their study of land cover changes 

in the Mara savanna ecosystem in Kenya. In their study, they used a combination of time 

contextual and spatial contextual approach to delineate areas of vegetation changes in the 

Mara savanna ecosystem. The technique computed and combined changes at pixel and 

landscape levels. First, they applied univariate image differencing to pairs of smoothed (101 

x 101 pixel low-pass filter) vegetation index images to delineate large-scale changes. Second, 

the local scale patterns were detected via pixel-level image differencing between the two 

original (un-smoothed) full resolution images. Finally, the latter change image was subtracted 
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from the former, resulting in a change image wherein all pixels that behaved differently over 

time at both scales had the highest change value. 

In this study, only the time contextual approach was adopted (Figure 4.1). Here the image 

differencing technique was applied to pairs of multi-date images, subtracting NDVI values 

measured at successive dates. This band differencing method measures change along a 

continuum of change intensity. The difference depicts the degree to which the vegetation 

cover was modified. However, this method requires selection of a threshold to differentiate 

change from non-change (Fung and LeDrew, 1988). Two methods are often used for 

selection of thresholds (Singh, 1989): (1) Interactive procedure or manual trial-and-error 

procedure- analyst interactively adjusts threshold and evaluates the resulting image until 

satisfied, and (2) statistical measures- selection of a suitable standard deviation from a class 

mean. In this study, an interactively defined threshold was applied to make sure that only 

areas of high change intensities are retained in the final change map. The thresholds allowed 

classification of each difference image into three categories: increase in NDVI, no change, 

and decrease in NDVI-corresponding with increases in land cover, no change in land cover 

and decrease in land cover respectively.  

To validate the detected change trajectories, the author visited the study area to gain ground-

truth information about what was happening in the areas that appeared in the change 

trajectories. 
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Figure 4.1: Flow chart describing the time-contextual approach used to detect land cover               

                  changes in the KCA (Modified from Serneels et al. 2001). 
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In the following sections, the results of the univariate image differencing analysis are 

presented. Note that in this chapter land cover changes are equated to changes in NDVI 

values (i.e. increase in NDVI values is equivalent to increase in land cover and vice versa). 

4.3 Results 

4.3.1 Land cover change trajectories in the KCA between 1986 and 1991 

Figure 4.2 shows the land cover change map from the Landsat 1986 and 1991 TM data. After 

production of the change image, a threshold of 20% was applied to it so as to ensure that only 

areas of significant changes were highlighted in the final change map.  

The area did not experience significant changes in vegetation greening. Some areas in the 

southeast appeared to have increased in NDVI values. Clouds are however suspected to play 

a part in the increases. Further interrogating is necessary to factor out the contributions of 

cloud cover, in order to generate a highly accurate assessment of vegetation cover in the area. 

Fig. 4.2 NDVI Image Differencing for 1986 - 2001 
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4.3.2 Land cover change trajectories in the KCA between 1991 and 2001. 

Figure 4.3 below clearly shows an increase in greening (higher NDVI values) in the 

northwestern and middle portions of the KCA, outside the main protected forests. This 

largely could be associated to vegetation regrowth in highly cultivated agricultural lands 

around the protected forests.  

It should be pointed out however that owing to time differences (fig. 2.1) on acquisition of 

respective images, caution must be exercised in drawing highly conclusive statements from 

the results. Further in-depth analysis is needed to remove remaining noise from remote 

sensing data through more robust pre-processing routines.  

Fig. 4.3 NDVI Image Differencing for 1991 - 2001 
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4.3.3 Land cover change trajectories in the KCA between 2001 and 2013. 

The KCA in general and the Kakum-Attandanso forests experienced no noticeable vegetation 

change between 2001 and April 2003, as depicted in figure 4.4 below. However, various 

parcels especially in close proximity to the main protected forests saw increases in NDVI 

values. This may largely be due to increase agricultural activities in the area. 

Fig. 4.4 NDVI Image Differencing for 2001 – 2013 

 

 

From the analyses of the results to determine the extent of observed change trajectories, it is 

evident that areas surrounding the main Kakum forest ecosystem especially,  had undergone 

some form of land cover change over the period between 1986 and 1991. The land cover 
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changes were either in terms of increase or decreases in NDVI-used as a proxy for measuring 

the trajectory of land cover change in this study. 

In terms of spatial location of the observed land cover changes (Figure 4.4), some of the areas 

that experienced significant decrease in land cover include: The north-western part of the 

area.  The southwestern areas however showed significant increases in land cover. But this 

might be impacted upon by clouds.  

4.4. Discussion. 

The univariate NDVI image differencing method was able to highlight areas that had 

experienced significant land cover changes in the study area over the study period and also 

the direction of these changes. From the 1986 and 1991 NDVI difference image, the results 

showed that the total area of the KCA had experienced some form of land cover change.  

Based on the knowledge of the land use practices gained during fieldwork, a number of 

explanations can be put forward for the observed changes in land cover status that were 

observed in the difference images of the area. It is evident that most of the areas that 

experienced decrease in land cover between 1986 and 1991 are located in the southwestern 

part and this is an area that has experienced a tremendous immigration of agro-communities 

over time. It is therefore, logical to argue that as a result of this immigration, a number of 

areas were cleared of vegetation between these two dates to give room for cultivation 

agriculture. A field visit to this region by the author revealed that indeed most of this region 

is currently under cultivation agriculture. 

Turning to the difference image between the 1991 TM and 2001 ETM+, it is evident that 

there were significant changes in land cover status of KCA with and area extent of 366km2 

experienced some form of land cover modification. Similar explanations to those put forward 
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for the changes between 1986 and the 1991 also apply to the case of image differencing 

between 1991 and 2001. For example, in the south-western part of the area, some areas still 

showed remarkable decrease in land cover between 1991 and 2001. As was for the case with 

the 1986 and1991 difference image, the explanation here is that more vegetation is still being 

cleared to give room for cultivation agriculture. However, interestingly some of the 

cultivation zones were actually recorded as had undergone an increase in land cover between 

1991 and 2001.The reason for the observation is linked to the type of cultivation agriculture 

being practiced in some of these areas. In some of the areas, farmers have been encouraged 

over the past to practice agro-forestry type of farming whereby trees are planted together with 

crops. This could provide the reason as to why these areas seem to have had an elevated 

NDVI instead of a reduction as would have been expected when forests are cleared and 

replaced by farms. Furthermore, in some of these areas, plantation forestry is being practiced 

and this would definitely lead to an increase in NDVI values in such farms. 

4.5. Conclusion. 

From the foregoing results and discussion, it is evident that the univariate NDVI image 

differencing algorithm was quite successful in discerning the land cover change trajectories 

that occurred in KCA during the entire study period. It is evident that the changes in land use 

and land acquisition arrangements I the study area have had a considerable impact on its land 

cover status. The notable land use practices that played a major role in these land cover 

dynamics include cultivation agriculture undertaken by the communities which immigrated 

into the area, increased cocoa agriculture and land acquisition arrangements.  

In conclusion, it is worth noting that these results of NDVI image differencing show a very 

similar trend to those observed in the results of PCA in chapter three. It can therefore be 
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stated that these two methods complement quite well and could offer a comprehensive means 

of studying land cover dynamics in forest ecosystems. 
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                                                        CHAPTER FIVE 

EVALUATION OF THE TRENDS IN LAND COVER CHANGES IN THE MAJOR   

                                     LAND COVER TYPES OF THE KCA. 

5.1. Introduction. 

In chapters three and four, the areas of possible land cover changes were identified and the 

trajectories for these changes were determined respectively. To be able to determine which 

land cover was affected by the observed changes and by how much, post-classification 

comparison of the land cover types between the study dates was deemed necessary. This 

required that the images be classified independently and then their land cover categories 

compared. However, it should be noted that production of a detailed classification map was 

not the main objective of this process, but rather a more general classification based on the 

dominant physiognomic characteristics of the vegetation types (tropical forest) of the KCA.  

Post classification comparison involves independently produced spectral classification results 

from each end of the time interval of interest, followed by a pixel-by-pixel or segment-by 

segment comparison to detect changes in cover type. By adequately coding the classification 

results, a complex matrix of change is obtained, and change classes can be defined by the 

analyst. The principal advantage of post-classification comparison lies in the fact that the two 

dates are separately classified, thereby minimizing the problem of radiometric calibration 

between dates. The method can also be made insensitive to a variety of types of transient 

changes in selected terrain features that are of no interest by choosing the appropriate 

classification scheme. However, the accuracy of the post - classification comparison is totally 

dependent on the accuracy of the initial classifications. The final accuracy closely resembles 
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that resulting from the multiplication of the accuracies of each individual classification and 

may be considered intrinsically low. 

Nevertheless, several studies have used post-classification comparison method in change 

detection with some levels of success. For example, Hull et al (1991) classified Landsat 

images acquired at two different dates into five forest classes (clearings, regeneration, 

broadleaf, conifer, and mixed). Following the two classifications, they were able to construct 

a matrix of class changes and calculate the transition rates between the classes. Xu and 

Young (1990) on the other hand preceded their post-classification comparison by a manual 

segmentation of the images according to ground features and characteristics of the scene. 

They then classified all segments separately for each date via a supervised maximum 

likelihood pattern recognition routine. Through this procedure they were able to avoid some 

obvious errors in classification such as classifying moorlands as built-up in the case of their 

study. 

In the present study, the basic classification approach was adopted and the results were later 

compared for each satellite image. 

5.2. Methodology. 

In the classification approach adopted, each image was classified using the unsupervised 

classification approach. A supervised classification was not done due to the lack of necessary 

ground data such as GCPs.  

Finally, after the classification of each image, they were imported into the ArcMap Catalogue 

package to generate maps which were used to compare each image date to ascertain the 

amount of individual land use type change in the KCA over time. 
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5.3 Classification Results of the 1986, 1991, 2001 and 2013 Landsat Images 

Figures 5.1 to 5.4 below present the classification results for all the  images. Based on visual 

inspection of the original images and the available ancillary data, the final classification was 

categorized into five major physiognomic classes:(1) Forests  (2) Agriculture (3) 

Bush/shrubland (4) Built-up/bare ground, and (5) Plantation. 

Agricultural activities are hugely concentrated in the northern portion of the forest (see fig. 

5.1) in the 1986 image. But these activities are evenly distributed and increased all around the 

protected forests of Kakum –Attandanso (see fig. 5.2 below), in the 1991 image in 

comparison with the 1986 image. 
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Fig. 5.1 Classification Map of the 1986 Landsat TM Image 
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Fig. 5.2 Classification Map of the 1991 Landsat TM Image 
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Fig. 5.3 Classification Map of the 2001 Landsat ETM Image 
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Fig. 5.4 Classification Map of the 2013 Landsat ETM Image 

 

 

 



 

55 
 

5.4 Discussion. 

As the classification procedure was only intended at giving a general picture of the land cover 

changes in KCA over the study period, it is evident that the results were plausible. Looking at 

the maps of the various land cover types over the years (Figures 5.1, 5.2, 5.3 &5.4), it is clear 

that the forest and riverine vegetation category has been undergoing a gradual decline in 

cover from 1986 to 2013. This is understandably so since these regions have fertile soils and 

reliable rainfall suitable for cultivation agriculture and hence would be the first target for the 

immigrating agro-communities in the area. Indeed the classification maps have shown that 

the amount of forest and riverine vegetation category had declined from 1986 steadily to 

2013. 

The trend in the vegetation cover decline continued between 2001 and 2013, but at a much 

more slower rate. A reason for this slow decline could possibly be the type of agriculture that 

has been encouraged in the area. Agro-forestry and plantation forestry have been encouraged 

in the regions where cultivation agriculture is being practiced. This could have led to those 

areas that were initially classified as cultivated lands before the introduction of agro-forestry 

being classified as forests after the inception of the practice and hence reducing the detectable 

change from forests into cultivation agriculture. 

 In the category of cultivated land, bare ground and degraded zones, through both visual 

inspection and unsupervised classification signatures, 1986 image seemed to have had very 

minimal/undetectable cover under this category. However, in 2001 this increased evidently. 

This is due to the fact that this period experienced an enormous immigration of agro- 

communities into the area, particularly in the western and eastern portions. They then 

engaged in the clearance of the forested areas to give room to cultivate land. Between 2001 

and 2013, there was a slight decline in the area categorized as cultivated, bare ground and 
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degraded zone. This might have resulted from the reason mentioned earlier, that is, the 

introduction of agro-forestry and plantation forestry in some of the areas previously classified 

as cultivated lands in the 2001 image being classified as forests in the 2013 image. 

Image artefacts, especially cloud cover have had influence on built up and bare-ground area 

analysis in the 1986 image (Fig. 5.1). Much more robust image processing regime is required 

to remove or reduce the impacts of such image artefacts in order to make the results and 

analysis much rigorous and representative.  

Similar challenges from cloud artefacts (which could not be removed completely by the 

Atmospheric correction algorithm adopted), present a huge source of bias into the analysis of 

bare-ground and built up areas. The south-eastern corner of both the 2001 and 2013 images 

by visual inspection reports huge changes in that land use type. Though visits to the area 

during fieldwork showed some bare-ground and built up expansion, especially in some main 

townships, what is reported does not depict the true picture on the ground, and could only be 

attributable to cloud bias. 

5.5. Conclusion. 

The results of the classification of the satellite images were quite plausible. They indicated 

that the changes in land use systems in KCA have had a dramatic influence on the land cover 

dynamics of the entire study area. Cultivation agriculture is on the rise as more and more of 

the area is being sub-divided into individual leases and share-cropping arrangements. The 

land cover type that seems to bear the brunt of the onslaught of cultivation agriculture is the 

forests and riverine vegetation. The reason for this is that these areas have both fertile soils 

and reliable rainfall as opposed to other parts of the area. 
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It can therefore be concluded that considering that the classification was performed without 

adequate ancillary data (due to the retrospective nature of the images and accessibility) and 

with the problem of mixed pixels, they were able to give a fair account of how the changes in 

land use practices and land tenure systems have impacted on the trends of the major land 

cover categories of the KCA. 
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                                                             CHAPTER SIX 

                                                  GENERAL CONCLUSIONS 

6.1. Overview 

The study sets out to examine the possible land cover dynamics that had taken place in the 

KCA as a result of changes in land use systems using an integration of remote sensing and 

GIS methods. Within this broad aim, the specific objectives were: 

- To identify areas of this ecosystem that had undergone significant land cover changes, 

- To analyze and map the land cover change trajectories in this ecosystem, 

- To classify available satellite images and use the classification maps to identify trends 

of land cover changes in each land cover type and, 

- To provide possible reasons for the observed land cover changes where appropriate. 

Three methodologies were adopted to achieve these objectives: (1) principal components 

analysis (PCA), (2) univariate NDVI image differencing and (3) classification analyses. 

Principal components analysis was used to detect the areas that had experienced possible land 

cover changes over the study period. After highlighting these areas, it was deemed necessary 

to determine whether they were increases or decreases in land cover. The univariate NDVI 

image differencing algorithm was used to determine these change trajectories. Finally, 

classification of all the satellite images was undertaken and the resultant image classification 

maps compared to gain knowledge of the trends of the observed land cover changes in each 

land cover type. 
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6.2. Findings  

It was evident that the land cover of KCA had undergone considerable changes over the study 

period. Principal components analysis was able to identify areas of possible land cover 

changes in the area. The algebraic patterns of the loadings in the eigenvectors of the various 

principal components (PCs) were examined to identify those PCs that seemed to depict areas 

of change (i.e. PCs which had negative loadings on the channels of one date and consequent 

positive loadings on the channels of the second date). In this study, PC2 and PC4 on both the 

two merged data sets seemed to highlight areas of possible land cover changes. A visual 

analysis of these PCs showed that there were regions which had significant departures from 

the grey scale (i.e. either elevated brightness or high levels of dark tones), a phenomenon that 

has been shown to indicate areas of possible change in land cover change detection studies 

using PCA (Byrne et al, 1980; Fung and LeDrew 1987). 

The location of these areas was determined and visited during fieldwork to find out what was 

going on in terms of the current land use practices. It was apparent that the south-western 

region of the area (an area presently under cultivation agriculture) and the north eastern 

region  appeared as areas that had undergone some form of land cover changes from the PCA 

results. In order to determine what these changes were, the NDVI image-differencing 

algorithm was then implemented on the NDVI images of each of the satellite images. 

The results from the PCA in chapter three clearly showed that there have been vegetation 

cover changes between the years. The first  and second PCs together  representing the 

accumulated greenness. As utilized by Hirosawa, Y. et al (1996) in the application of PCA to 

land cover characterization using multitemporal AVHRR Data, all the three PCA matrices in 

this study (Tables 3.1, 3.3 & 3.5) presented values of the first PC eigenvectors to be positive, 

higher and consistent over the entire analysis. The second PCs on the other hand showed  a 
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somewhat cyclical pattern or seasonal variation. It can therefore be explained that PC1 

eigenvalues in all the individual periods (Tables 3.2 (73.5%), 3.4 (71.56%) and 3.6 

(83.51%)), serve to quantify the density and photosynthetic activity of vegetation. The values 

of PC2 also quantify the seasonal patterns of vegetation change. 

The univariate NDVI image differencing results were able to highlight the specific land cover 

change trajectories that occurred in the KCA over the study period. It was also deduced that 

the areas that had undergone either increases or decreases in land cover had been influenced 

in one way or the other by the land use practices in those particular regions. For example, the 

southwestern part immigration of agro-communities into these regions who have been 

clearing these zones to give way to cultivation agriculture (mainly cocoa agriculture) and 

expansion of settlements. 

From the results of classification of the images, it was deduced that over three-quarters (3/4) 

of the area is under the land cover category-tropical forest. In terms of land cover changes; 

the forested regions seem to have undergone a significant decline over the study period, 

mainly around the protected Kakum-Attandanso forest. This is due to the fact that these areas 

have fertile soils and reliable rainfall and would therefore be the first target areas for 

immigrating agricultural-based communities.  

Overall it suffices to say that the effect of noise, especially  that of clouds, which could not be 

removed completely by the DOS atmospheric correction algorithm applied, might have 

introduced some negative biases in the results. Nonetheless, the study has proved the 

significance of remote sensing and GIS capabilities in land cover change analysis. More 

robust atmospheric correction algorithms such as FLAASH, need to be adopted to improve 

upon the accuracy level of the results. 
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In conclusion, judging by these results, it can be said that the integration of remote sensing 

and GIS proved viable in detecting the land cover dynamics that have occurred in the KCA as 

a result of changes in land use and land tenure systems. GIS and remote sensing therefore 

offers a viable alternative to studying landscape dynamics in vast ecosystems such as the 

tropical forest where traditional land cover studies would be inadequate and uneconomical. 

6.3. Further research. 

Areas of further research and consideration should aim at looking at how to improve image 

processing quality as the KCA is bedevilled with an extensive cloud cover over a larger part 

of the year. Thus much more robust and in-depth image processing algorithms (Example, 

FLAASH and QUAC in the ENVI software) to isolate attributes such as clouds, which might 

impact hugely on results (see Mayaux, P. et al, (2013)) 

Another processing issue is that of mixed land cover composition, making land use analysis 

and evaluation complicated. Applications such as the one adopted by Foody, G.M. et al 

(1997) in mapping tropical forests in the Mato Grosso area in Brazil, could be employed to 

increase the robustness of land use and land cover analyses in the KCA and other similar 

regions. 
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