The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment

R. A. FISHER*, M. WILLIAMS*, A. LOLA DA COSTA†, Y. MALHI‡, R. F. DA COSTA§, S. ALMEIDA¶ and P. MEIR*

*School of GeoSciences, University of Edinburgh, Edinburgh, UK, †Universidade Federal do Pará, Belém, Pará, Brazil, ‡Centre for the Environment, University of Oxford, Oxford, UK, §Universidade Federal de Campina Grande, Paraíba, Brazil, ¶Museu Paraense Emílio Goeldi, Belém, Pará, Brazil

Abstract

Warmer and drier climates over Eastern Amazonia have been predicted as a component of climate change during the next 50–100 years. It remains unclear what effect such changes will have on forest–atmosphere exchange of carbon dioxide (CO₂) and water, but the cumulative effect is anticipated to produce climatic feedback at both regional and global scales. To allow more detailed study of forest responses to soil drying, a simulated soil drought or ‘throughfall exclusion’ (TFE) experiment was established at a rain forest site in Eastern Amazonia, Brazil, for which time-series sap flow and soil moisture data were obtained. The experiment excluded 50% of the throughfall from the soil. Sap flow data from the forest plot experiencing normal rainfall showed no limitation of transpiration throughout the two monitored dry seasons. Conversely, data from the TFE showed large dry season declines in transpiration, with tree water use restricted to 20% of that in the control plot at the peak of both dry seasons. The results were examined to evaluate the paradigm that the restriction on transpiration in the dry season was caused by limitation of soil-to-root water transport, driven by low soil water potential and high soil-to-root hydraulic resistance. This paradigm, embedded in the soil–plant–atmosphere (SPA) model and driven using on-site measurements, provided a good explanation ($R^2 > 0.69$) of the magnitude and timing of changes in sap flow and soil moisture. This model-data correspondence represents a substantial improvement compared with other ecosystem models of drought stress tested in Amazonia. Inclusion of deeper rooting should lead to lower sensitivity to drought than the majority of existing models. Modelled annual GPP declined by 13–14% in response to the treatment, compared with estimated declines in transpiration of 30–40%.

Keywords: Amazonia, drought, hydraulic conductivity, rain forest, sap flow, soil water, SPA model, stomatal conductance, throughfall exclusion, water relations

Introduction

Most global climate models predict that increasingly El Niño-like climate conditions will cause reduced rainfall over Eastern Amazonia (Cubasch et al., 2001). Cox et al. (2000, 2004) suggested that rainfall over Amazonia may

be reduced as much as 65% by 2100, and that this would cause large emissions of carbon dioxide (CO₂) from the Amazon basin, associated with forest dieback. These emissions, in turn, would accelerate the rate of climate change. More recent analyses using several coupled climate and carbon cycle models indicate that over the next 100 years, the net feedback between the biosphere and atmosphere is likely to be positive, with the biosphere adding between 20 and 200 ppm to atmospheric CO₂ concentrations by 2100 (Friedlingstein et al., 2006). The majority of the model simulations conducted by
Friedlingstein et al. (2006) predict a major decline in land carbon storage, located in tropical forests and the Amazon basin in particular, in response to climatic drying. However, the link between reduced rainfall and altered ecosystem gas exchange is poorly understood, and gives rise to major uncertainties in these model predictions (Nepstad et al., 1994; Potter et al., 1998; Prentice & Lloyd, 1998; Tian et al., 1998; Avisser & Nobre, 2002; Asner et al., 2004; Betts et al., 2004; Cowling et al., 2004; Cox et al., 2004; Gash et al., 2004; Huntingford et al., 2004; Levy et al., 2004; Werth & Avisser, 2004; Meir et al., 2006).

Uncertainty in predictions of the response of Amazonian forest gas exchange to drought is driven by two factors, the absence of appropriate data and a lack of process level understanding of soil limitation in forests. Firstly, in several studies of gas exchange by tropical forests made using the eddy covariance technique (Carswell et al., 2002; Saleska et al., 2003; da Rocha et al., 2004; Goulden et al., 2004; Loescher et al., 2005), only one study detected a response of ecosystem-scale gas exchange to reduced water availability, at Manaus, in central Amazonia, during a single non-ENSO year (Malhi et al., 1998, 2002) and five studies have shown no limitation. The limited time frame and absence of complete physiological auxiliary data sets at the Manaus site mean that it was difficult to assess the exact causes of gas exchange limitation (Williams et al., 1998).

Secondly, at present, all vegetation gas exchange models used at the ecosystem scale employ simple empirical relationships between soil moisture status and stomatal conductance or gas exchange to simulate forest drought responses (Melillo et al., 1993; Foley et al., 1996; Essery et al., 2002; Werth & Avisser, 2004; Woodward & Lomas, 2004). This means that even locally parameterized versions of vegetation gas exchange models have been unable to correctly predict the ecosystem drought response observed at Manaus (Harris et al., 2004).

To address the first problem of data availability, a ‘throughfall exclusion’ (TFE) experiment was constructed at Caxiuana, in Eastern Amazonia, where rainfall was excluded from the soil over a 1 ha experimental plot. Two years of tree water use (sap flow) and 3 years of soil moisture data were collected in both the experimentally manipulated plot and an adjacent ‘control’ plot. These data quantified how the forest responded to drier soil conditions than those concurrently experienced in the control plot.

To facilitate improvements in process-level understanding, we investigated whether the sap-flow and soil moisture data support the paradigm of forest water limitation embedded in the soil–plant–atmosphere model (SPAM) (Williams et al., 1996, 2001b). SPAM is unique among ecosystem gas exchange models because of its explicit modelling of soil-to-leaf water transport. Two key assumptions control the responses to hydraulic stress in SPAM. First, the model assumes that stomatal conductance (g_s) is controlled so that CO_2 uptake is maximized, while simultaneously preventing leaf water potential (Ψ_l) from dropping below a critical minimum value (Ψ_{crit}). Testing this assumption, Fisher et al. (2006) found that detailed simultaneous diurnal ecophysiological measurements of tree hydraulics (g_s, sap flow and Ψ_l) were consistent with the mechanism of stomatal conductance embedded in the SPAM model across a wide range of soil moisture conditions. It is not known which plant mechanism signals water stress to stomata (Dewar, 2002; Buckley, 2005); however, several experimental studies support the hypothesis that Ψ_l cannot drop below a critical value (Tyree & Sperry, 1988, 1998; Hacke et al., 2000; Mencuccini & Comstock, 2000; Hubbard et al., 2001; Sperry et al., 2002; Chapotin et al., 2006). Several previous modelling analyses have assumed that control of Ψ_l above Ψ_{crit} is necessary to avoid xylem damage via embolism (Sperry et al., 1998; Magnani et al., 2000; Tuzet et al., 2003; Katul et al., 2003). In addition, Dewar (2002) concluded that, while other mechanisms may play some role in regulating g_s, it was not possible to explain the observed dynamics of Ψ_l and g_s without invoking a mechanism which prevents Ψ_l decreasing below a minimum value. If stomata do function to maintain Ψ_l above Ψ_{crit}, this leads to a situation whereby, under extreme hydraulic stress, evapotranspiration is governed by the rate of supply of water from the soil to the leaf.

Soil-to-leaf water supply is driven by the soil-to-leaf water potential gradient and the total soil-to-leaf hydraulic resistance (R). Tree-scale measurements at the Caxiuana site (Fisher et al., 2006) and modelling studies at Manaus (Williams et al., 1998) found that changes in water supply were dominated by changes in R, not water potential gradient. R is the sum of several hydraulic resistances, but it is not clear which of these is dominant under drought stressed conditions (Sperry et al., 1998, 2002; Williams et al., 1998, 2001b). Fisher et al. (2006) found that the belowground hydraulic resistance (R_{bg}) was the dominating resistance in the dry season, and that aboveground plant xylem resistance (R_{x}) did not change seasonally. R_{bg} consists of both soil-to-root and root xylem resistances in series. The second assumption employed by the SPAM model is that the temporal dynamics of soil-to-leaf water supply are dominated by changes in soil-to-root water transport (movement of water through the soil matrix to the root surface), not by changes in the hydraulic conductivity of the plant xylem. The plant xylem resistances are kept constant while the soil-to-root resistance is estimated from rooting density and soil hydraulic properties. Data
on soil hydraulic properties have been collected at this site (Fisher et al., 2007) and allow the detailed parameterization of this mechanism.

Some studies have previously considered the simultaneous impacts of changes in both soil hydraulic resistance and xylem hydraulic resistance, due to embolism (Sperry et al., 1998; Katul et al., 2003). However, these studies only considered equilibrium scenarios. Here, the aim is to generate dynamic predictions of plant water use. To implement a dynamic model of xylem embolism would require the implementation of multiple parameters defining root and shoot xylem processes. The assumption that only soil hydraulic resistance and not xylem resistance varies through time is therefore the most simple process-based mechanism by which low soil water may exert control over canopy water use.

Together, these two assumptions, of a critical minimum leaf water potential and variable soil-to-root water transport, form a paradigm for the mechanism underlying tree responses to drought stress. This paper investigates how much of the observed variation in water use can be explained via this paradigm. Our approach here is to use independently measured data to provide parameters for a process model. Without any optimization, the model is compared against multiple independent time-series data. The model is used to test understanding of the dynamics of the coupled SPA system, and thus, estimate the model’s predictive power. This paper is novel in that we have (1) collected data on water relations of soil and plants under varied conditions in a rain forest, and (2) developed a detailed model of how soil–plant–water relations are coupled. In this analysis, consistency between process representation and observation was investigated to provide a basis for reliable prediction.

The SPA model was also used to investigate the implications of the rainfall exclusion for carbon uptake. It is not possible to measure forest carbon uptake over a 1 ha area using the eddy covariance technique, but water and CO₂ exchange are linked via stomatal conductance (Wong et al., 1979). Therefore, the model of stomatal conductance, which is verified against water use data, can be used as a means to predict the impact of the soil moisture deficit on canopy photosynthesis, using measured photosynthetic parameters. This model-data synthesis is used to address two key questions.

1. Are the observed seasonal changes in forest water use consistent with the paradigm that gas exchange is limited by changes in soil-to-root water supply?
2. What is the reduction in photosynthesis associated with the reduction in transpiration?

Materials and methods

Site

The experimental site is a lowland terra firma rainforest located in the Caxiuanã National Forest, Pará, Brazil, (1°43.5’S, 51°27.36’W). Mean annual rainfall is 2272 (±193) mm, with a dry season between July and December, when only 555 (±116) mm of rainfall occurs on average (data from 1999 to 2003). The soil is a yellow oxisol (Brazilian classification latosol), with a 0.3–0.4 m thick stony/laterite layer at 3–4 m depth. The soil texture (0.0–0.5 m) is 75–83% sand, 12–19% clay and 6–10% silt (Ruivo & Cunha, 2003). The site elevation is 15 m above river level in the dry season, and the water table has occasionally been observed at a soil depth of 10 m during the wet season.

To investigate the limitation of soil water on forest gas exchange in drier conditions than those normally experienced, an artificial soil drought was created using TFE. This work was carried out as part of the LBA (Large-Scale Biosphere–Atmosphere Experiment in Amazonia) Ecology programme (Avissar & Nobre, 2002). Two 100 m × 100 m plots, one control and one treatment ‘TFE’ plot, were established and their boundaries were trenched to a depth of 1 m to reduce the lateral flow of water. In the TFE plot, a septum comprising transparent plastic panels and plastic-lined guttering was installed at ~2 m height in December 2001, with the purpose of excluding rainfall from the soil (Fig. 1). The covering extended over 80% of the total ground area and was in place for the entire duration of the experiment (from January 2001 to December 2003) with the exception of the 4th to the 21st of November 2002, when they were removed.

Meteorology

Half-hourly meteorological data were measured using an automatic weather station located at the top (51.5 m) of a tower 1 km from the experimental plot. Rainfall was measured using a tipping bucket rainfall gauge (Campbell Scientific, Loughborough, UK) with a resolution of 0.2 mm. Atmospheric humidity was measured with an aspirated psychrometer (WP1-UM2, Delta-T Devices, Cambridge, UK). Radiation was measured with a four-component net radiometer (CNR1; Kipp and Zonen, Delft, the Netherlands) and a photosynthetically active radiation (PAR) sensor (Skye Instruments, Powys, UK). Wind speed was measured using a cup anemometer accurate to 1% (Campbell Scientific). This weather station provided 60–80% coverage over the 3 years for wet and dry bulb temperature, incoming and outgoing short-wave radiation, PAR and long-wave
Fig. 1 Throughfall exclusion installation at Caxiuanã forest. One hectare (100 m x 100 m) of plastic panels draining into aqueducts intercepts incoming rain and drains it away from the soil, causing an artificial drought. The panels cover ~80% of the ground area and were in place throughout the whole duration of the experiment, with the exception of the 4-21 November 2002, when they were removed.

radiation and wind speed. Data were collected using a datalogger (CS10X, Campbell Scientific). For all meteorological variables, measurements were made every 10 s and averaged over each 30 min period. Vapour pressure deficit (VPD) in kPa was calculated from wet and dry bulb temperatures. For the periods when no meteorological data were available, a gap-filling procedure was used (H. Iwata, personal communication). Gaps were filled for all the meteorological variables except rainfall using a mean monthly diurnal cycle, constructed from the existing data. For 2002-2003, gap filling was used for 10% of temperature data, 22% of solar radiation data and 35% of VPD data. In the case of rainfall, the gaps were filled using daily rainfall data collected from a manual weather station located in a clearing 800 m from the experimental plots, so the coverage of rainfall data was 100%. There was good agreement between the manual and automatic daily precipitation data [$R^2 = 0.87$, root mean square error of approximation (RMSE) = 0.8 mm].

Sap flow

Sap-flow rates were measured for 12 trees in each plot, chosen using size-stratified sampling, to obtain the same diameter distribution in the sample as that found in the plot. Only trees located further than 20 m from the treatment boundary were used, to minimize the impact of the boundary trenching and maximize the impact of treatment. Sap flow was measured using the trunk segment heat balance method (Cermak et al., 1973, 2004) (Sap Flux Meter P4.1, Environmental Measuring Systems, Brno, Czech Republic). Sap flux in each tree was measured every minute and averaged over every 15 min period throughout each day. The data collection period was October 2001 to December 2003, although power problems resulted in only a few days of data being collected during the first 4 months of the collection period.

The sensors used in this technique measure sap flux velocity (kg h$^{-1}$ m$^{-1}$ circumference) over a sector of xylem tissue, therefore, do not require calibration for xylem depth, if the sensors (which were 30–50 mm long) penetrate horizontally through all of the active xylem tissue. Xylem depth at breast height was estimated in wood cores from 47 trees (from >35 species), ranging from 0.1 to 1.3 m in diameter, both visually, and using dye previously injected below the point of measurement. These estimates confirmed that water was not vertically transported by xylem present beyond 30 mm horizontal distance into any of the trees at breast height.

A protocol was developed to estimate the stand-scale sap flow (total sap flow per unit ground area) from the tree-scale sap flow data for each plot. Sap flow was scaled from the units of individual trees to canopy scale as follows. During the day, sap flux velocity (kg h$^{-1}$ m$^{-1}$ circumference) was positively correlated with tree diameter (average daytime $R^2 = 0.48$). The larger diameter trees were taller and therefore placed their leaves higher in the canopy (data not shown), where they could access more solar energy, so more transpiration occurred per unit of leaf area and by inference, per unit of sap wood area. In both plots, a census of the diameters at breast height (DBH) of all the trees >0.1 m DBH was conducted. The relationship between DBH and sap flux velocity was used to estimate the total sap flow of each tree in each plot. The sap flux velocity s (kg h$^{-1}$) of each tree in each experimental plot was estimated as

$$s_{t,i} = (p_t d_i + q_t) d_i,$$

where p_t and q_t are the slope and intercept of the estimated linear relationship between sap flux velocity (kg h$^{-1}$ m$^{-1}$ circumference) and diameter of the ith tree d_i (m) at time t. The stand-scale sap flow Q (kg h$^{-1}$ m$^{-2}$ ground area or mm h$^{-1}$) was then calculated as

$$Q = \frac{\sum s_{t,i} d_i}{a},$$

where a is the area of the plot (m2).

Errors for the sap flow scaling process were generated by calculating a 90% confidence interval for the value of the slope parameter p. The relative uncertainty in this value was propagated through the calculations to give the error on the stand-scale sap flow values.
Soil water content

To monitor the effect of the TFE on soil moisture, four soil access pits were constructed in each plot and time domain reflectometry (TDR) sensors identical to those described by Jipp et al. (1998) were placed at 0–0.3, 0.5, 1, 2, and 5 m depths in each pit at least 1 m back from the wall of the access pit. The 0.0–0.3 m sensor was placed vertically and the other sensors were placed horizontally. The TDR sensors were monitored using a Textronix 1502C cable tester (Textronix, Richardson, TX, USA). Automatic logging was not possible with this system and soil moisture was measured manually every 10–14 days between July 2000 and December 2003. The individual waveforms produced by the cable tester were analysed using the WATTDR program (v. 3.11, Waterloo Groundwater Research, Waterloo, ON, Canada, 1996).

A gravimetric calibration of the TDR sensors was conducted by removing three 0.3 m tall × 0.15 m diameter cores of soil at 0.05–0.35 and 0.30–0.60 m depth. TDR probes were installed in the three cores; the soil was saturated and allowed to dry within a light box for 10 days. Mass and TDR waveforms were measured at gradually decreasing frequency throughout the experiment. The samples were then oven dried at 105 °C for 24 h to calculate the dry soil mass and water content derived as the difference between wet mass and dry mass. (Veldkamp & O’Brien, 2000). The calibration function was applied to the output of the sensors and the calibrated values were averaged over the four soil pits.

Vegetation characteristics

Leaf area index (LAI) was measured in November 2001, May 2002, November 2002, May 2003 and November 2003 at dawn using Li-Cor LAI-2000 plant canopy analysers (Li-Cor Inc., Lincoln, NE, USA). One-hundred measurements were made at every point on a marked 10 m × 10 m grid in both the control and TFE plots. Paired LAI sensors were used following a standard protocol, with one in a forest clearing, to give an image of the clear sky and the other taking measurements within the forest. Root biomass was measured using samples obtained during the construction of the soil access pits in 2001. Four pits were dug in each plot, two pits to 10 m and two pits to 5 m in the control, with four pits to 5 m in the TFE. From each of the four soil pits, all the soil extracted was sifted for roots, which were divided into diameter classes of 2–5, 5–10, 10–20 and >20 mm. Then dried and weighed to find the total dry mass in each depth and diameter category.

Modelling methodology

Owing to logistical constraints, there was only one treatment and one control plot, so the TFE experiment was not replicated. Therefore, a direct statistical comparison of the two plots is not presented. Instead, we investigated whether the data from the TFE and control experiments were consistent with the paradigm that changes in soil-to-root water supply can explain the response of transpiration to soil drying, as expressed in the SPA model (Williams et al., 1996, 1998, 2001b). The SPA model has been successfully tested in temperate oak forest (Williams et al., 1996), Arctic tundra (Williams et al., 2000), boreal forest (Lee & Mahrt, 2004), Amazonian rain forest (Williams et al., 1998) and Oregon Ponderosa Pine (Williams et al., 2001a) ecosystems. In the last two studies, the dry season caused some limitation of gas exchange. Both analyses emphasized the importance of increased hydraulic resistance as the main factor linking soil water reductions to plant function. However, this study is the first fully parameterized test of the SPA model in a drought affected ecosystem. Details of the SPA canopy model are given in Williams et al. (1996) and of the SPA soil moisture model in Williams et al. (2001b). To avoid duplication, the description here is limited to those aspects of the model controlling drought responses.

In the SPA model, reduced soil-to-leaf water supply is linked to forest gas exchange via stomatal closure at low leaf water potential (Ψ_l) values. Ψ_l dynamics in each canopy layer, in MPa, are simulated as the balance between supply and demand

$$\frac{d\Psi_l}{dt} = \frac{\Psi_s - \rho_w gh - ER - \Psi_l}{CR},$$

where Ψ_s is the soil water potential (MPa), ρ_w is the density of liquid water (kg cm$^{-3}$), g is gravitational acceleration (9.8 m s$^{-2}$) and h is the mean height (m) of the canopy layer. C is the capacitance or plant water storage (mmol m$^{-2}$ MPa$^{-1}$) and R is the soil-to-leaf hydraulic resistance (m2 s MPa$^{-1}$). E is the rate of transpiration (mmol m$^{-2}$ s$^{-1}$) calculated using the Penman–Monteith equation (Jones, 1992) for each canopy layer, g_0 an input to the Penman–Monteith equation, is calculated via an optimization routine which maximizes photosynthetic carbon uptake while preventing Ψ_l declining below Ψ_{crit} (Williams et al., 1996; Fisher et al., 2006).

The hydraulic properties determining soil-to-leaf water supply are, therefore, Ψ_s, R and C [Eqn (1)]. Ψ_s is calculated from soil water content using the van Genuchten (1980) soil hydraulics model. The sensitivity of SPA to canopy capacitance (C) is low (Williams et al., 1998) and has been estimated using data from

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 2361–2378
another tropical forest by Goldstein et al. (1998) (see Fisher et al., 2006 for details). Soil-to-leaf hydraulic resistance \(R \) is the sum of the soil-to-root (\(R_s \)), root xylem (\(R_{root} \)) and aboveground plant xylem (\(R_{ag} \)) hydraulic resistances.

Soil-to-root resistance calculations

Soil-to-root resistance for each soil layer was calculated as

\[
R_s = \log\left(\frac{\sqrt{\frac{T_{sat}}{r}}}{\pi K_{VG}}\right),
\]

where \(L \) is the total root length in the soil layer in question (m), \(r \) is the root radius (m) and \(K \) is the soil hydraulic conductivity \((m \text{ s}^{-1}) \). \(\omega \) is a scaling value to convert hydraulic conductivity from \(\text{m s}^{-1} \) to \(\text{mmol m}^{-1} \text{s}^{-1} \text{MPa}^{-1} \).

Root length \(L \) (m) was calculated from biomass as

\[
L = \frac{b}{d \pi r^2},
\]

where \(b \) is the root biomass \((g) \), \(d \) is the density of the root material \((g \text{ m}^{-3}) \) and \(r \) is the mean root radius.

The total resistance of water within one soil layer \(R_{i,i} \) \((m^2 \text{ MPa s mmol}^{-1}) \) was found by adding the soil-to-root to the internal root transport resistance for the \(i \)th layer

\[
R_{i,i} = R_{s,i} + \frac{\sigma}{b_i},
\]

where \(\sigma \) is the inverse of the conductivity of root xylem per unit biomass \((\text{MPa s g mmol}^{-1}) \) and \(b_i \) is the total root biomass in each soil layer \((g) \). The cumulative conductance of all the soil layers was then calculated and multiplied by the fraction of leaf area \(l \) in a given canopy layer \(i \)

\[
R_{bg} = \frac{1}{\sum_{i=1}^{10} \frac{1}{\sigma_i}}.
\]

\(R_{bg} \) is then added to the aboveground resistance, \(R_{ag} \), to give the total resistance \(R \) as an input to Eqn (1).

van Genuchten soil hydraulics model

The van Genuchten (1980) model of soil hydraulics is one of the most commonly used soil hydraulic models. It defines effective saturation \(S_e \) as the ratio between the water content \((\theta) \) above the residual \((\theta_r) \) and the range between the residual and saturated \((\theta_s) \) water contents (all in \(\text{m}^3 \text{ m}^{-3} \))

\[
S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}.
\]

The soil water potential \(\Psi \) (MPa) is connected to the effective saturation by

\[
S_e = \frac{1 + (\Psi)^{n - 1}}{1 + (\Psi)^{n - 1}},
\]

where \(n \) and \(\Psi \) are model parameters. The hydraulic conductivity \(K \) \((\text{m s}^{-1}) \) is a function of soil water potential as follows:

\[
K = K_s \left(1 - \frac{(\Psi)^{n - 1}}{1 + (\Psi)^{n - 1}} \right)^{-2},
\]

where \(K_s \) is the saturated soil conductivity \((K_s) \) and \(l_{vg} \) is a model parameter. All the model parameters \((K_s, l_{vg}, n, \theta_r, \theta_s) \) were simultaneously optimized to water potential, soil water content and soil hydraulic conductivity data for four soil depths from 0.0 to 1.0 m by Fisher et al. (2007). Rain water was assumed to penetrate through the entire profile via biogenic macro pores, as observed in the soil moisture profile data and the infiltration experiment. Water uptake was assumed to occur only in fine roots (Tyree et al., 1998). The smallest root class measured was 2–5 mm, leaving some fine roots unmeasured. The measured root biomass density in the 2–5, 5–10 and 10–20 mm categories was largely similar. To estimate the fine root biomass (<2.5 mm diameter), this relationship was extrapolated and it was assumed that the fine root biomass was the same as the 2–5 mm biomass in each layer. The estimated fine root biomass was used as the input biomass for SPA.

Belowground parameterization

The SPA model calculates the belowground hydraulic resistance to water uptake \((R_s + R_{root}) \) using the method of Newman (1969) where \(R_{root} \) depends on \(\sigma \), the internal hydraulic resistivity of the tree roots. In the wet season, the belowground resistance at Caxiuana was 0.19 s m\(^2\) MPa mmol\(^{-1}\) in both plots (Fisher et al., 2006). It was assumed that in the wet season, belowground resistance is representative of \(R_{root} \) only as wet soil \(R_s \) is very low. \(\sigma \) was fixed to give wet season \(R_{root} \) of 0.19 m\(^2\) MPa mmol\(^{-1}\) in each plot. \(R_s \) is estimated from root density and soil hydraulic properties. The soil hydraulic properties were measured by Fisher et al. (2007) using pressure plate analyses, tension infiltrometry and the instantaneous profile method (Smith & Mullins, 2000). The parameters of the van Genuchten model were fitted to the data (Table 1). For the lower soil depths (1–5 m), no hydraulic conductivity data were available, so the soil hydraulic parameters of the lowest hydraulic conductivity measurements (1 m) were used.

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 2361–2378
Table 1 Parameters of the van Genuchten Soil Hydraulics Model used in the SPA simulations taken from Fisher et al. (2007)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.50–0.15</td>
</tr>
<tr>
<td>θ_e</td>
<td>0.127</td>
</tr>
<tr>
<td>θ_s</td>
<td>0.516</td>
</tr>
<tr>
<td>α</td>
<td>5.40</td>
</tr>
<tr>
<td>N</td>
<td>1.27</td>
</tr>
<tr>
<td>K_{sat}</td>
<td>1011</td>
</tr>
<tr>
<td>l</td>
<td>-1.25</td>
</tr>
</tbody>
</table>

The minimum water potential values measured by Fisher et al. (2006) had a mean value of 2.52 ± 0.75. This was very close to the value of -2.5 MPa used by Williams et al. (1996). Fisher et al. (2006) found that the average aboveground resistance (R_{ag}) was $1.79 \text{ s m}^{-2} \text{ MPa mmol}^{-1}$, and did not change significantly ($P > 0.1$) between seasons, and, therefore, was defined as a constant. The parameter determining the incremental increase in photosynthesis necessary for stomata to remain open, ι, was set as 1.001, from a study using SPA by Misson et al. (2004), who calibrated ι against data from a Ponderosa Pine forest in California, USA. The SPA model predicts gross primary productivity (GPP) photosynthetic rates from estimates of g_w which are used to generate internal leaf CO$_2$ concentrations. Internal leaf CO$_2$ concentrations, in combination with canopy layer meteorology and photosynthetic capacity measurements, are used to drive the photosynthesis model of Farquhar & Von Caemmerer (1982). The photosynthetic capacity parameters, V_{cmax} and J_{max}, were measured at different heights in the canopy (i.e. $A-C_i$ and $A-Q$ curves measured using a Li-6400, Li-Cor Inc., Lincoln, NE, USA; R. Lobo do Vale, personal communication).

The effect of the TFE experiment was simulated by including a dimensionless ‘exclusion’ parameter (ε). ε is the amount of water which is removed from the system by the rainfall exclusion panels and drained away. This process occurs after rainfall has been intercepted by the forest canopy, so

$$P_g = \varepsilon (P_1 - P_i).$$

P_g is the rainfall reaching the ground, P_1 is the total rainfall and P_i is the rainfall intercepted by the canopy and later evaporated from the leaf surface (all in mm). ε was not measured directly, but instead was estimated as 0.50 using measurements this site and data from a similar experiment in the Tapajós forest, also in eastern Amazonia.

Aboveground parameterization

The Caxiuanã and Tapajós TFE experiments were deliberately constructed using the same design. The structure of the Caxiuanã TFE experiment was compared with the Tapajós experiment by measuring the ground area of the forest covered by the rainfall exclusion panels (see Fig. 1). In the Caxiuanã experiment the panel coverage was 80%, close to that reported by Davidson et al. (2004) for the Tapajós experiment (78%). It was concluded that the Caxiuanã experiment was similar to the Tapajós experiment, since the design, materials and panel coverage were all identical. Nepstad et al. (2002) made physical measurements of the amount of water flowing through the drainage ditch system during rainstorms at the Tapajós forest experiment and report that, irrespective of the size of the rain storm, the TFE infrastructure excluded 50% of incoming rainfall from the soil surface. The strong linear relationship between total rainfall and rainfall reaching the ground found by Nepstad et al. (2002) is used to justify the linearity of Eqn (3). This value of 50% was consistent with water balance calculations using the data presented here whereby water storage = precipitation – transpiration, with no storage component. In the SPA model simulation for Caxiuanã, ε, the exclusion parameter, was set to 0.50. The interception term P_i was determined from a mechanistic model of leaf water interception within SPA. The leaf interception model fills the leaf storage until the canopy has reached saturation, after which water drains from the leaves exponentially. The evaporation of water from the surface is altered according to the altered apparent surface conductance to water (see Williams et al., 1996). The key parameter in this model is the canopy water storage capacity (S). Measurements of canopy interception capacity of rain forests have been made by several authors ranging from 0.74 (Lloyd & Marques, 1988), 0.93 (Dykes, 1997) to 1.15 (Schellekens et al., 1999) and 1.25 (Ubarana, 1996). Bruijnzeel & Wiersum (1987) report that a range of 0.8–1.2 mm was found in earlier studies. In light of these data, the canopy storage capacity in SPA was set as 1.0 mm. The sensitivity to this parameter over the 0.8–1.2 mm range was found to be low (data not shown).

The canopy parameterization is described in Table 2. All other aspects of the model, other than those mentioned in Tables 1 and 2, are the standard SPA model inputs as defined by Williams et al. (1996, 2001b). The SPA model was parameterized as described, and run at a 30 min resolution for 3 years from 1 January 2001 to 31 December 2003 for the control and TFE plots. The meteorological data and linearly interpolated LAI data were used to drive the model over time.
Photosynthetic parameters \((J_{\text{Cmax}} \text{ and } V_{\text{Cmax}})\) vary linearly with canopy height. SPA, soil–plant–atmosphere; TFE, through-fall exclusion.

Measurement results

Meteorology

The meteorological measurements show seasonality in temperature, incoming short wave radiation, VPD and rainfall (Fig. 2). In each of the 3 years studied, there were high temperatures and VPD between August and November, followed by a sharp decline to wetter, cooler conditions in December. Although there is monthly variation, it is useful to split the year into wetter, cooler conditions in December. Although there were high temperatures and VPD between August and November, followed by a sharp decline to wetter, cooler conditions in December.

Average wet season rainfall was 9.4 \pm 11.0 \text{ mm day}^{-1}. Average dry season rainfall was 3.0 \pm 9.9 \text{ mm day}^{-1}. Average daytime VPD increased from 0.51 \pm 0.22 \text{ kPa} in the wet season to 0.72 \pm 0.23 \text{ kPa} in the dry season, with average daily maxima of 1.06 \pm 0.34 and 1.36 \pm 0.35 \text{ kPa}. Mean daytime incoming short-wave radiation increased from 345 \pm 84 \text{ W m}^{-2} in the wet season to 423 \pm 74 \text{ W m}^{-2} in the dry season with maxima of 738 \pm 156 and 812 \pm 135. Average daily minimum temperature remained relatively constant (23.0 \pm 0.6 to 23.1 \pm 1.0 \text{ °C}) but maximum temperature was higher in the dry season (31.2 \pm 1.50 \text{ °C}) than the wet season (29.6 \pm 1.42 \text{ °C}). Net radiation varied between 11.5 and 13.0 \text{ MJ day}^{-1} (annual totals of 4.1–4.2 \text{ GJ yr}^{-1}) in 2001 and 2002 (Y. Malhi, personal communication).

Sap flow

Coring and dye measurements showed that the average xylem depth was 17 \pm 6 \text{ mm}, so the xylem rarely extended beyond 20 mm horizontally into the bole beyond the bark, irrespective of tree size. Therefore, the 30 mm long sap flow electrodes passed through all of the conductive tissue. Before the installation of the TFE experiment, the diurnal behaviour of the scaled sap flow over 5 measured days in the control and TFE plots was very similar \((R^2 = 0.89, \text{ RMSE} = 1.38 \times 10^{-5} \text{ mm h}^{-1})\), indicating that, if differences between the two plots exist, they did not affect dry season gas exchange patterns during these days. In the control plot, average sap flow in the wet season \((2.6 \pm 0.85 \text{ mm day}^{-1})\) was 29\% lower than the average rate of sap flow in the dry season \((3.4 \pm 0.7 \text{ mm day}^{-1})\) (Fig. 3) suggesting that under normal climatic circumstances, water limitation did not cause a substantial decline in forest gas exchange. In the TFE plot, TFE began in November 2001, but only sparse sap flow data were available until early 2002, after the wet season had begun. The TFE plot sap flow was, on average, 0.7 mm day\(^{-1}\) lower than the control plot sap flow until mid-August 2002. After this point, there was a very rapid reduction in TFE plot sap flow from \(\sim 4\) to \(\sim 0.5 \text{ mm day}^{-1}\) within 50 days (Fig. 3). On the 4th November 2002, the panels were partially removed for a short period (marked * in Fig. 3). A large rain event (44 mm) occurred on the 16th November. Sap flow responded immediately to the pulse of rainfall, on the 17th November, increasing from 0.4 to 1.8 mm and then to 4.5 mm on the 18th November. Sap flow was reduced immediately to the pulse of rainfall on the 21st November. Sap flow rates from the TFE plot then returned to the previous value of \(\sim 0.4 \text{ mm day}^{-1}\). The sap flow remained low compared with the control plot until \(\sim 20\)th March 2003, corresponding to increased soil moisture deficit. From April to June 2003, sap flow rates in both plots increased. In the TFE plot, sap flow rates declined through the 2003 dry season from July 2003 until the end of the measurement period. The sap flow of the TFE plot was on average 44\% in 2002 and 41\% in 2003 lower than the control plot. At the peak of the dry season in both years, sap flow in the TFE plot was 18\% of that in the control, a reduction of 82\%.

Table 2 Parameters used in the SPA model run and their origins

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Control</th>
<th>TFE</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy height</td>
<td>m</td>
<td>30</td>
<td></td>
<td>Measured from tower</td>
</tr>
<tr>
<td>(J_{\text{max}})</td>
<td>(\mu\text{mol m}^{-2}\text{s}^{-1})</td>
<td>43–75</td>
<td></td>
<td>Lobo do Vale \ et al. (in prep)</td>
</tr>
<tr>
<td>(V_{\text{max}})</td>
<td>(\mu\text{mol m}^{-2}\text{s}^{-1})</td>
<td>24–44</td>
<td></td>
<td>Lobo do Vale \ et al. (in prep)</td>
</tr>
<tr>
<td>Capacitance</td>
<td>(\text{mmol m}^{-2}\text{MPa}^{-1})</td>
<td>2300</td>
<td></td>
<td>Goldstein \ et al. (1998)</td>
</tr>
<tr>
<td>Through fall fraction (c)</td>
<td>–</td>
<td>1.0</td>
<td>0.50</td>
<td>Nepstad \ et al estimates</td>
</tr>
<tr>
<td>Aboveground resistance</td>
<td>(\text{mm}^2\text{MPa mmol}^{-1})</td>
<td>1.79</td>
<td>1.79</td>
<td>Fisher \ et al. (2006)</td>
</tr>
<tr>
<td>Root resitivty</td>
<td>(\text{mm}^2\text{MPa mmol}^{-1})</td>
<td>8.76</td>
<td>10.38</td>
<td>Fisher \ et al. (2006)</td>
</tr>
<tr>
<td>Iota</td>
<td>–</td>
<td>1.001</td>
<td>1.001</td>
<td>Misson \ et al.</td>
</tr>
<tr>
<td>Rooting depth</td>
<td>m</td>
<td>10</td>
<td>10</td>
<td>This paper</td>
</tr>
<tr>
<td>(\psi_{\text{cri}})</td>
<td>MPa</td>
<td>–2.52</td>
<td></td>
<td>Fisher \ et al. (2006)</td>
</tr>
</tbody>
</table>

(c) 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 2361–2378
Fig. 2 Temperature, photosynthetically active radiation (PAR), vapour pressure deficit (VPD) and total daily rainfall for the period between 1 January 2001 and 31 December 2003. Filled symbols, daytime average; open symbols, daily maximum value.

Fig. 3 Measured (symbols) and modelled (lines) stand-scale sap flow in the control (upper panel) and throughfall exclusion (lower panel) plot for 3 years using the standard SPA parameterization. Sap flow data scaled to stand-scale from a sample of 12–24 trees. The vertical arrows indicate the beginning of the throughfall exclusion. *the period when the panels were temporarily removed (explanation in text). Error bars in grey are 1 SD intervals propagated from the confidence in the relationship between tree diameter and sap flow rate. SPA, soil–plant–atmosphere.
Soil water

The best-fitting calibration between the output of the TDR sensor (t) and the gravimetric soil water content (y, m3 m$^{-3}$) was $y = 16.61 \cdot \log (t) - 17.52$ ($R^2 = 0.95$, RMSE = 0.006 m3 m$^{-3}$). This calibration was applied to the TDR output to give θ. Soil water content in the top 3 m (Fig. 4) was initially lower in the TFE plot, but there were not significant differences (t-test, P-value > 0.05). In the control plot, θ in the top 3 m of soil varied between maxima of 860–890 mm in the wet season and minima of 570–610 mm in the dry season. Large differences between the control and TFE plot θ arose at the beginning of the 2002 wet season. The control plot rewetted from 609 to 870 mm during this time, whereas, in the TFE plot, soil water content did not exceed 645 mm during 2002 and 655 mm in 2003. The minimum soil water content in the TFE plot during the three dry seasons declined gradually from 466 mm in 2001 to 439 mm in 2002 and 398 mm in 2003.

Vegetation characteristics

LAI was initially similar in both plots and did not change until November 2002, when LAI decreased (Fig. 5). After this decline, LAI slowly increased in both plots and in November 2003 was 5.8 (SE = 0.08) and 4.6 (SE = 0.06) in the control and TFE plots, respectively. In the control plot, the total standing stock of fine root biomass integrated through the top 10 m was 865 g m$^{-2}$. In the TFE plot, root biomass was only measured down to 5 m for safety reasons. The root biomass declined exponentially from 0 to 5 m (Fig. 6) so an exponential model was fitted to the TFE data and used to predict the root biomass between 5 and 10 m. The form of the exponential curve was $y = 194.25 e^{-0.66d}$ ($R^2 = 0.79$, RMSE = 34 g m$^{-2}$) where d is depth in metres and y is root biomass in g m$^{-2}$. The extrapolated total root biomass in the TFE was 567 g m$^{-2}$.

Model-data comparison

In this section, we compare model predictions and data for soil moisture, soil water potential, soil-to-leaf resistance, sap flow, stomatal conductance and GPP. The SPA model provided a good explanation of the temporal changes in soil moisture content between 0 and 3.0 m (θ) that were measured in the control plot (Fig. 4) ($R^2 = 0.87$, slope = 1.02, intercept = −26 mm, RMSE = 29 mm). In the TFE plot θ simulations, R^2 was 0.68 and RMSE 64 mm (slope = 0.86, intercept = 143 mm). The reduced model fit was caused mainly by model over-prediction of θ during the dry season.

In the TFE plot, modelled dry season $Ψ_s$ varied between −0.6 and −1.2 MPa (Fig. 7). Control plot $Ψ_s$ varied between −0.05 and −0.2 MPa. If it is assumed that predawn $Ψ_f$ can be used as an estimate of $Ψ_s$, we can compare these values with the measurements made by Fisher et al. (2006) found that the gravity-corrected average predawn $Ψ_f$ of the TFE plot in November 2003 was $−0.71 \pm 0.31$ MPa and of the control plot $−0.17 \pm 0.10$ MPa.
The modelled reduction in y in the TFE plot from the wet to the dry season caused a concurrent increase in the modelled soil-to-root hydraulic resistance. In the dry season, R in the TFE plot peaked at 2.5 s m$^{-2}$ MPa mmol$^{-1}$ in the dry season. The 2003 dry season values of R measured for individual trees by Fisher et al. (2006) were 7.8 ± 5.9 and 3.1 ± 0.7 s m$^{-2}$ MPa mmol$^{-1}$ in the TFE and control, respectively. The model was within the 1 SD confidence limits of the data.

R^2 of the modelled vs. measured daily sap flow was 0.78 in the control and 0.69 in the TFE plot (Fig. 3, Table 3). In the control plot, where there were only small changes in R and Ψ_s between seasons, water use was higher in the dry season than the wet season, indicating that hydraulic stress was not present in this treatment under normal rainfall. In the TFE plot, reduced soil-to-leaf water supply in the dry season was caused by low Ψ_s and high R. Limited soil-to-leaf water supply lowered modelled Ψ_1 to near Ψ_{crit}. This low Ψ_1 triggered reduced modelled g_s and sap flow during the dry season. The reductions in modelled sap flow were of similar timing and magnitude to those observed in the data (Fig. 3). The slopes of the model-data relationship were 1.02 and 0.82 in the control and TFE, respectively (Table 3), indicating a slight overprediction by the SPA model, especially in the control plot. Most temporal events in the observed water cycle were similar to model predictions, in particular, the response to a large rainstorm during the period when the covers were removed in November 2002, the wet to dry season transition period of 2003 and the responses to small rain storms in the 2003 dry season (Fig. 3). In the wet season of 2002, sap flow is overestimated by the model.
for both plots and the onset of the drought stress is too early. During this period, there were some gaps in the meteorological data, which may have lead to these erroneous predictions. The diurnal sap flow patterns both in the wet season and in the dry season of 2003 were also well simulated (Fig. 9). R^2 values of half hourly sap flow were 0.82 and 0.75 for the control and TFE plots, respectively.

Estimated annual totals of transpiration were similar for 2001, 2002 and 2003 in the control plot (1316, 1253 and 1223 mm) but gradually decreased from year to year in the TFE plot (1258, 953 and 805 mm). The reduction in the total modelled annual sap flow of the TFE plot, compared with the control plot, was 31% in 2002 and 41% in 2003, compared with measured estimates (for the times when data from both plots were available) of 44% in 2002 and 41% in 2003. Modelled sap flow rates indicate that the control plot transpired 54–58% of the incoming rainfall in all years. In the TFE plot, 58% of the rainfall was transpired in 2001, rising to 91% in 2002 and 85% in 2003 as the rainfall was reduced. Less water was, therefore, available for drainage, and the reduced drainage would have larger scale impacts on river flow and regional hydrology. The proportion of net radiation used for transpiration was estimated as 77–82% in the control plot. In the TFE plot, the 2001 proportion was 79%, declining to 60% in 2002 and 51% in 2003 as transpiration was limited by water availability. These values only include transpired water, and do not include evaporation from leaf or soil surfaces.

Modelled daytime (06:00–18:00 hours) bulk average g_s of sun and shade leaves over all 10 canopy layers was reduced, in the TFE plot from 150 to 60 mmol m$^{-2}$ s$^{-1}$ during both dry periods. In the TFE plot, these data closely match the average daytime stomatal conductance values directly measured at this site by Fisher et al. (2006), who found $g_s = 138 \pm 33$ and 63 ± 17 mmol m$^{-2}$ s$^{-1}$ in May and November of 2003,

Table 3

Statistics of model-data comparison for sap flow and soil water content for control and through-fall exclusion (TFE) plots

<table>
<thead>
<tr>
<th>Data type</th>
<th>Units</th>
<th>Statistic</th>
<th>Control</th>
<th>TFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sap flow</td>
<td>mm day$^{-1}$</td>
<td>R^2</td>
<td>0.78</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMSE</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.80</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intercept</td>
<td>0.40</td>
<td>0.44</td>
</tr>
<tr>
<td>Soil water</td>
<td>m3 m$^{-3}$</td>
<td>R^2</td>
<td>0.87</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMSE</td>
<td>29</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>1.02</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intercept</td>
<td>−26</td>
<td>143</td>
</tr>
</tbody>
</table>

($R^2 = 0.87$, slope = 1.02, intercept = −26 mm, RMSE = 29 mm).

In the TFE plot θ simulations, R^2 was 0.68 and RMSE 64 mm (slope = 0.86, intercept = 143 mm).

RMSE, root mean square error of approximation.

Fig. 9 Measured (symbols) and modelled (lines) half-hourly stand-level sap flow for the control plot (top two panels) and through-fall exclusion plot (bottom two panels).
respectively. In the control plot, average modelled g_s was ~ 170 and $\sim 150 \text{ mmol m}^{-2}\text{s}^{-1}$ in May and November 2003, compared with measured values of 141 ± 37 and $98 \pm 32 \text{ mmol m}^{-2}\text{s}^{-1}$. The model over-predicts stomatal conductance in the control plot, but, given the variation between trees in values of g_s, it is difficult to assign confidence limits to these measured values. However, there is a good model fit to sap flow data at these times, (Fig. 3), and these provide a measurement which is averaged over entire leaf populations of trees, and a greater sample size of individual trees. Reduced stomatal conductance decreased modelled GPP (Fig. 10). In the wet season, 5-day average modelled canopy GPP was very similar between plots (Fig. 10), but in the dry season, the GPP of the TFE plot was reduced to 55–60% of the GPP of the control plot, in response to a modelled draw down of internal leaf CO$_2$ concentration.

Estimates of maximum daily GPP using data from an eddy-covariance study also located at Caxiuana (Carswell et al., 2002) yielded similar rates of maximum GPP in the wet and dry seasons, respectively, (of 27 and 29 $\mu\text{mol s}^{-1}\text{m}^{-2}$) to those predicted by the model (27 $\mu\text{mol s}^{-1}\text{m}^{-2}$ for both seasons). The Carswell et al. data were corrected for in-canopy CO$_2$ storage, but not for the potential effects of CO$_2$ advection under low u^* conditions.

Discussion

Are the observed seasonal changes in transpiration consistent with the paradigm that gas exchange is limited by changes in soil-to-root water supply?

The predictions of the SPA model were found to be broadly consistent with the observed short and long term dynamics of sap flow, soil water content, soil water potential, leaf water potential and stomatal conductance data across a wide range of soil moisture conditions. The model was able to explain 69% of the variance in sap flow and 68% of the variance in θ in the TFE plot and model residuals were 12% and 31% of the mean model sap flow. These results, therefore, provide support for the paradigm that forest water use is controlled by changes in soil to root water transport. Of the remaining 30% error in sap flow predictions, some will

![Fig. 10](https://example.com/fig10.png)

Fig. 10 Upper panel, daily rainfall (mm day$^{-1}$); middle panel, 5-day average daytime leaf level stomatal conductance (average of sun and shade leaf stomatal conductance per unit leaf area weighted for leaf area at 10 canopy layers between 06:00 and 18:00 hours) for the control (dotted line, open symbols) and throughfall exclusion (TFE) (solid line, filed symbols); bottom panel, simulated GPP for the control (dotted line, open symbols) and TFE (solid line, filed symbols). Five-day average values from half-hourly simulations by the SPA model. The vertical arrows indicate the beginning of the through-fall exclusion. SPA, soil–plant–atmosphere; GPP, gross primary productivity.
be attributable to measurement error, some to inaccurate model parameterizations and driving data and some to inappropriate model process representation. To assess the contribution of process representation inaccuracy in time-series analyses with multiple data sets such as these, data assimilation methods comparing model input parameter uncertainty to data uncertainty should be used (i.e., Williams et al., 2005). These are beyond the scope of this paper but will be the subject of future investigations.

The results found here support the idea that soil-to-root resistance exerts a large control on transpiration. In contrast, Sperry et al. (1998) found in a modelling analysis, that high-xylem (not soil-to-root) resistance, due to cavitation and embolism, exerted the largest control on the soil-to-leaf transport of water. Embolism was not explicitly modelled in this study, so its importance cannot be ruled out. However, Sperry et al. did not model conditions with rooting density as low as those found at this site. Furthermore, they predict that under conditions of lower rooting density, it is more likely that soil-to-root resistance would be the largest resistance in the soil-plant-atmosphere continuum; a view which is consistent with the results found in this study. Deep rooting may be a general feature of Amazonian soils (Nepstad et al., 2002) so the large vertical distribution and low density of root biomass is likely to be a common feature of rain forest ecosystems, widening the generality of these conclusions.

Several assumptions were made by the modelling approach used here. First, it was assumed that root biomass did not change through the experiment. Altered root biomass would certainly alter the soil-to-root hydraulic resistance. Presumably, the effect of drought would be to increase belowground allocation and root biomass, ameliorating the response of the forest to drought, although this effect was not evident in the sap flow data. It was also assumed that roots are evenly spread through the soil and have constant radius, and that soil properties below 1.0 m do not change substantially. It is recognized that these assumptions remain untested, however, detailed investigation into root dynamics is underway at the Caxiuanã site, which should provide insight into their importance.

In the control plot, little evidence was found of limitation of transpiration in the dry season, as gas exchange rates were substantially higher than in the wet season (Fig. 3). This finding is in common with recent satellite observations (Huete et al., 2006) and the majority of eddy covariance measurements of gas exchange (Carswell et al., 2002; Saleska et al., 2003; Goulden et al., 2004; da Rocha et al., 2004; Loescher et al., 2005) but is at odds with terrestrial ecosystem model predictions of contemporary Amazonian gas exchange (Tian et al., 1998; Zeng et al., 2005; Peylin et al., 2006) which predict large declines in assimilation during dry periods.

What is the reduction in photosynthesis associated with the reduction in sap flow?

Extrapolation of the estimated stomatal conductance values, using the photosynthesis model of Farquhar & von Caemmerer (1982) indicated that a 13–14% drop in GPP occurred as a result of the TFE experiment over the 2 years of the experiment, with a reduction of 40–45% during the driest periods (Fig. 10). The reductions in photosynthesis are predicted to occur in tandem with the reductions in sap flow, and were due to the (predicted) declines in stomatal conductance during the dry seasons in the TFE plot (Fig. 10). Reductions in modelled GPP were less extreme than reductions in transpiration, as transpiration is linearly related to stomatal conductance, whereas photosynthesis may be limited by a variety of other factors and thus does not respond linearly to instantaneous changes in stomatal conductance.

Modeled GPP was 3094 g m⁻² yr⁻¹ in the control and 2685 g m⁻² yr⁻¹ in the TFE in 2002, and 3138 g m⁻² yr⁻¹ in the control and 2705 g m⁻² yr⁻¹ in the TFE in 2003. The average difference in total GPP between the control and the TFE plots was 13.2% and 13.8% in 2002 and 2003, respectively. In addition, studies of carbon stocks within the TFE experiment show that stem growth in the TFE plot effectively ceased over the course of the experiment and that there was a decline in leaf area as described above. Both of these observations are consistent with a large decrease in carbon input from GPP. The impact of the treatment on net ecosystem exchange of CO₂ will be the subject of future publications (P. Meir, personal communication).

Conclusions

Measurements over 2 years in an eastern Amazonian rain forest indicate that transpiration is higher in the dry season than the wet season under normal circumstances, and there is little evidence for limitation of water use during the dry season. However, experimental TFE, removing an estimated 50% of the rainfall, caused soil drying and a resultant decrease in total sap flow of 41% with the most severe drought periods causing an 80% reduction in sap flow compared with the control. These results, which suggest that the forest is not able to withstand a 50% reduction in rainfall over 1–2 years without impacts on canopy gas exchange, are in contrast with the results of Nepstad et al. (2002) for their TFE experiment, located in the Tapajós national
forest. Nepstad et al. measured predawn leaf water potentials over the course of 2 years and found no change in \(\Psi_{pd} \), suggesting that the TFE did not provoke substantial drought stress in the canopy for the first 2 years, although changes were found in the dry season of the second year (Asner et al., 2004). There are several possible explanations for this contrast with the Caxiuana results. Firstly, the Tapajós experiment did not impose a continuous TFE. Instead, the panels were removed during the dry season, thereby reducing the total impact of the treatment. In addition, the Tapajós experiment was located on a clay type soil which is known to be at least 90 m deep, and, in contrast to the Caxiuana site, does not have a stony laterite layer, which may prevent the development of substantial deep root systems at Caxiuana (although roots were found below this layer). The vertical extent of the root system, and the water holding capacity of the soil may, therefore, have contributed to the increased drought resilience of the Tapajós forest, but published data is not available on either parameter to establish whether this is the case.

The experiment was designed to simulate future low rainfall conditions predicted by Cox et al. (2000) for Eastern Amazonia. The level of rainfall reduction experienced by both Tapajós and Caxiuana experiments (50%) was less than that predicted by Cox et al. (2000), (2004), using the HADCM3LC global climate model coupled to a dynamic vegetation model, predicted a decrease in average rainfall over the Amazon basin from 4.56 mm day\(^{-1}\) in 2000 to 1.64 mm day\(^{-1}\) in 2100, a decline of 65% over the 21st Century. However, Betts et al. (2004) propose that, while approximately half of this reduction is caused by changes in global climate patterns, the other half is due to feedback on rainfall from changes in vegetation cover. The feedback is both regional, via biophysical feedbacks, and global, via increases in CO\(_2\) levels due to the die-back of Amazon forests. The parameterization of the magnitude of both feedback processes is uncertain (Harris et al., 2004; Huntingford et al., 2004) and this uncertainty formed part of the justification for this experiment. Greater confidence in modelling the Amazon-climate interaction, and hence in predicting rainfall declines, may now be achieved by assimilating results from experiments of this kind into global vegetation models (e.g. Huntingford et al., 2004). Different global climate models predict different rainfall scenarios over Amazonia, with the Hadley Centre models consistently producing the most severe drying over the Amazon region. However, the recently published fourth IPCC assessment report (Fig. 7; IPCC, 2007) suggests that, over large areas of Southern and Eastern Amazonia, there is agreement between GCM’s that dry season rainfall will decline by 10–30%.

In Northern and Central areas, there is no agreement between GCMs and in a small area of the Western Amazon, a slight increase in precipitation rates is predicted. None of these GCM simulations included dynamic vegetation models, or the impacts of land use change. On going deforestation is likely to reduce evaporation over the whole Amazon basin, even in the absence of climate change and climatic drying is likely to reduce evaporation over the Southern Amazon. These changes in vegetation cover due to climate or land use change are likely to amplify any changes in the forcing meteorology (Betts et al., 2004). Again, information from rainfall exclusion experiments should help inform land surface models about the likely extent of these feedback processes. However, the TFE experiment reported here only altered rainfall, and not temperature, VPD or radiation. Increases in all these factors are predicted under the warming and drying scenario, but it is not possible to experimentally test their simultaneous effects on forest physiology. Clearly, it is likely that the concomitant increases in temperature and VPD will decrease the ability of the forest to withstand low rainfall. It is only through the development of physically based models, such as SPA, that the effects of these complex changes in multiple environmental variables can be investigated.

The reductions in sap flow and soil moisture observed in this study were mainly consistent with the paradigm that changes in soil-to-root water supply are the major control of transpiration under reduced soil water conditions, as embedded in the SPA model. In combination with the verification of the model against diurnal tree physiology data by Fisher et al. (2006), the findings presented here imply that it is feasible to mechanistically model responses to drought by rain forest if soil hydraulic and root profile properties are known. Information on both of these ecosystem properties is very sparse in Amazonia (Tomasella & Hodnett, 1997; Nepstad et al., 2004), but estimation of both is possible without sophisticated measurement techniques. If improvements in understanding of the feedback between the potential future drying of the forest and the climate system are to be made, then better knowledge of the spatial variation in active rooting depth, soil water-holding capacity and soil hydraulic conductivity must be obtained. However, because these inputs to the SPA model can be measured directly, their potential ranges may be constrained using ground-based measurements, leading to greater confidence in the predictions of global models. Given the potential global importance of this feedback mechanism (Cox et al., 2000, 2004; Friedlingstein et al., 2006), data collection on the ecosystem properties must be considered a priority.
Acknowledgements

This work was supported by a University of Edinburgh faculty research Scholarship, several Natural Environment Research Council (UK) research grants, a Natural Resources International Foundation Fellowship and the Elizabeth Sinclair fund (University of Edinburgh). The authors would like to thank John Grace for comments on the manuscript, Raquel Lobo do Vale and Luiz Aragão for provision of unpublished data, Alan Braga, João Athaydes and Paulo Gonçalves for field assistance and the Museu Paraense Emilio Goeldi for the use of their field station and laboratory facilities.

References

RESPONSE OF RAIN FOREST TO DROUGHT STRESS

Tyree MT, Sperry JS (1988) Do woody-plants operate near the point of catastrophic xylem dysfunction caused by dynamic

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 2361–2378

