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Abstract

Aim: Tropical elevation gradients are natural laboratories to assess how changing climate can influ-

ence tropical forests. However, there is a need for theory and integrated data collection to scale

from traits to ecosystems. We assess predictions of a novel trait-based scaling theory, including

whether observed shifts in forest traits across a broad tropical temperature gradient are consistent

with local phenotypic optima and adaptive compensation for temperature.

Location: An elevation gradient spanning 3,300 m and consisting of thousands of tropical tree trait

measures taken from 16 1-ha tropical forest plots in southern Per�u, where gross and net primary

productivity (GPP and NPP) were measured.

Time period: April to November 2013.

Major taxa studied: Plants; tropical trees.

Methods: We developed theory to scale from traits to communities and ecosystems and tested

several predictions. We assessed the covariation between climate, traits, biomass and GPP and NPP.

We measured multiple traits linked to variation in tree growth and assessed their frequency distribu-

tions within and across the elevation gradient. We paired these trait measures across individuals

within 16 forests with simultaneous measures of ecosystem net and gross primary productivity.
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Results: Consistent with theory, variation in forest NPP and GPP primarily scaled with forest bio-

mass, but the secondary effect of temperature on productivity was much less than expected. This

weak temperature dependence appears to reflect directional shifts in several mean community

traits that underlie tree growth with decreases in site temperature.

Main conclusions: The observed shift in traits of trees that dominate in more cold environments

is consistent with an ‘adaptive/acclimatory’ compensation for the kinetic effects of temperature

on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed

overly peaked and skewed distributions, consistent with the importance of local filtering of optimal

growth traits and recent shifts in species composition and dominance attributable to warming

from climate change. Trait-based scaling theory provides a basis to predict how shifts in climate

have and will influence the trait composition and ecosystem functioning of tropical forests.

K E YWORD S

Amazon, Andes, ecosystem function, elevation gradient, metabolic scaling theory, scaling, stoichi-

ometry, trait-based ecology

1 | INTRODUCTION

Tropical forests are among the most productive ecosystems on the

Earth and account for about one-third of global net primary produc-

tivity (NPP; Field, 1998). However, we still know relatively little

about what controls variation in tropical forest NPP because they

are relatively undersampled compared with their importance (Malhi,

Doughty, & Galbraith, 2011). Globally, terrestrial primary productiv-

ity varies geographically and is influenced by physiological and envi-

ronmental processes operating over a wide range of scales (Roy,

Saugier, & Mooney, 2001; Schlesinger, 1991). As species respond

individualistically to variation in climate, there is increasing need to

disentangle how productivity and other biogeochemical processes

are influenced by shifts in both climate and species-specific plant

traits (Chapin, 2003; Diaz et al., 2004; Kerkhoff, Enquist, Elser, &

Fagan, 2005; Lavorel & Garnier, 2002).

A promising approach to linking plant functioning and ecosys-

tem processes comes from trait-based scaling theory (Box 1). It

assumes that for a given environment, for any trait closely associ-

ated with variation in plant growth or demography, there is a mean

trait value and an optimal trait value that maximizes growth rate

given the constraints of the environment (Enquist et al., 2015; Nor-

berg et al., 2001; Savage, Webb, & Norberg, 2007). Recently, Feeley

(2012) and Feeley et al. (2011) argued that the species composition

of tropical forests is shifting because of increases in temperature

associated with climate change. They found directional (upward)

shifts in the elevation ranges of multiple tree genera. However, the

rate of tree migration was lower than the observed rate of tempera-

ture increase. Thus, if organismal traits are matched to the local

environment (Ackerly, 2003), the functional composition of tropical

forests may be increasingly out of equilibrium with the local climate.

Indeed, climate change is expected to induce marked vegetation dis-

equilibrium and impact ecosystem functioning as the trait or

functional composition of vegetation is disrupted and increasingly

lags behind (Davis & Shaw, 2001; Svenning & Sandel, 2013).

Although trait-based ecology has provided a useful foundation for

ecology and global change biology (Díaz et al., 2007; Qu�etier, Lavorel,

Thuiller, & Davies, 2007), much of the work has largely been correla-

tive. What is needed is the development of quantitative theory that

can generate predictions (Enquist et al., 2015; Fyllas et al., 2014; Hou-

lahan, Mckinney, Anderson, & McGill, 2017; Suding et al., 2008; Webb,

Hoeting, Ames, Pyne, & LeRoy Poff, 2010). Furthermore, theory based

on first principles will be better able to scale from traits to ecosystems

and predict shifts in community traits and diversity across space and

time (Enquist, 2010; Marquet et al., 2014; McGill, Enquist, Weiher, &

Westoby, 2006).

Here we test several key predictions of trait-based scaling

theory (see Figure 1; Table 1) in a series of highly diverse tropical

forest communities along an elevation gradient in the Andes.

Together, these tests allow us to assess whether changes in the

dominance and diversity of forest traits and variation in ecosystem

productivity are consistent with local phenotypic optima and adapt-

ive compensation for temperature. The gradient offers a natural lab-

oratory for assessing the environmental controls on functional traits,

forest composition and ecosystem processes (Asner et al., 2017;

Malhi et al., 2010). We assess several predictions across tropical for-

ests that span a 3,300 m elevation range and a c. 16.2 8C gradient in

mean annual temperature and where recent increases in tempera-

ture attributable to climate change have caused upward shifts in the

distribution of tree species. Across this gradient, we sampled a suite

of functional traits, forest structure and ecosystem measures based

on multiple field measurements (Malhi et al., 2017). We show how

variation in forest biomass and the abundance of several stoichio-

metric traits and other traits linked to variation in organismal relative

growth rate can then be used to predict variation in forest ecosys-

tem productivity.
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2 | TRAIT-BASED SCALING THEORY:
FROM TRAITS TO ECOSYSTEMS

We assess six predictions from trait-based scaling theory (see Table 1;

Enquist et al., 2015; Norberg et al., 2001; Savage et al., 2007). This

theory builds on earlier work, including metabolic scaling theory (MST).

These predictions are outlined in Table 1 and detailed in the Supporting

Information. We also assess how some of these predictions are further

modified by two differing hypotheses regarding the temperature

dependencies of traits (Box 1).

Whole-plant functioning is affected by numerous traits reflecting

differences in allocation to the quantity and quality of tissue (Enquist

et al., 2007; Evans, 1972; Garnier, 1991; Lambers, Freijsen, Poorter,

Hirose, & Van Der Werf, 1990). For example, the stoichiometric com-

position, that is the relative concentrations of various macro- and

micronutrients in plant tissues, influences whole-canopy rates of pro-

duction and biomass turnover (Ågren, 1988, 2004; Chapin, Vitousek, &

Van Cleve, 1986). Furthermore, variation in plant metabolism (i.e., res-

piration rates, gross photosynthesis) is influenced by the combined

effects of two variables, body size, m (West, Brown, & Enquist,

1997), and the absolute temperature, T in kelvin (K; Gillooly, Brown,

West, Savage, & Charnov, 2001). Metabolic scaling theory (see Sup-

porting Information) shows how variation in plant growth can be

linked to variation in plant size, and the specific traits that underlie

the normalization, b0, of growth rate (Enquist, West, Charnov, &

Brown, 1999, 2007; Kerkhoff et al., 2005). Variation in the relative

growth rate, m 5 dm/(m dt), is linked to body mass, m, and tempera-

ture, T, as follows:

l / b0e
2E=kTm21=4 (1)

Here, the effect of temperature is given by the Van’t Hoff/Boltz-

mann factor, e2E=kT , and describes the exponential kinetic depend-

ence of metabolic rate on temperature, T. Here, E is the activation

energy (measured in eV) and is a measure of the sensitivity of

BOX 1

Overview of a dynamical trait-based scaling theory. For any trait closely associated with variation in growth or demography and for a given
environment there is a mean trait value, zmean, and an optimal trait value, zopt, that maximizes growth rate, f, given the constraints of the
environment (see (Enquist et al., 2015; Norberg et al., 2001; Savage et al., 2007). The given biomass, C, of a trait value linked to growth, f,
will vary depending on the environment. Thus, the trait distribution is a function of environment, C(z).
The theory gives rise to the following predictions:

1. Reflecting selection and ecological filtering for optimal phenotypes, local community trait distributions will tend toward a unimodal

distribution (a and b), strong local sorting and dominance of specific traits will lead to more peaked distributions (positive kurtosis) (c).

2. In a shifting climate (a), community trait distributions will shift reflecting a shift in the optimal trait value, but the mean (zmean) will lag behind

zopt. In the case where the mean community trait decreases as temperature also decreases, we would expect that with warming due to cli-

mate change, trait distributions will be characterized by negative skewness (as in a) as the community shifts to the new optimal trait value.

In contrast, if the mean community trait is observed to increase across a temperature gradient then warming would lead to communities

characterized by positive skewness. Thus, the skewness of the trait distribution can reflect shifting optima and past change (a).

3. Communities with greater trait variance (b) will be better able to respond to and more quickly track climate change.

4. The current biomass distribution of a trait may be a legacy of environmental history and ecological interactions within the forest com-

munity. Different degrees of local ecological interactions will be reflected in different degrees of spread in distributions (c). However,

if there is strong filtering and competitive dominance of individuals with traits closer to zopt, we would predict communities to be

characterized by peaked distributions or positive kurtosis. As we discuss in the main text, we can take the distribution of traits that

underlie variation in growth rate to then scale up and predict ecosystem net primary productivity and forest mortality.
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metabolism to changes in temperature and k is Boltzmann’s con-

stant, k58.62 3 105 eV K21 (Gillooly et al., 2001; see Supporting

Information for more detail and Appendix S1 for a detailed listing of

all variables with associated units). The 21/4 exponent reflects the

importance of plant size, m, via the allometric effects of how growth

rates change within increases in plant size.

FIGURE 1 Graphical overview of several predictions of trait-based scaling theory that stem from two interrelated hypotheses. Hypothesis 1
(H1) states that variation in ecosystem fluxes (NPP and GPP) is attributable to variation in autotrophic biomass and environmental temperature.
Ecosystem productivity will scale with biomass raised to the 3/5 power. The effect of temperature will be reflected in an exponential tempera-
ture response characterized by a Boltzmann relationship with rates increasing with temperature as E c. 0.65 eV, with higher rates of mass-
corrected productivity in warmer sites. This would be reflected in an exponential response of the growth rate normalization b0 to temperature
(see Supporting Information Equation S8). In contrast, hypothesis 2 (H2) states that covariation in traits that underly plant growth can compen-
sate for the kinetic effects of temperature on plant growth and ecosystem productibity. As a result, the growth rate normalization b0 will be
independent of temperature (see Equation 3). The temperature response of ecosystem productivity will deviate from E50.65 eV and will result
in a shallower if not flat temperature response curve

TABLE 1 Summary of six predictions made by trait-based scaling theory

I. Directional shifts in traits associated with growth and metabolism (see b0; Equation 1; Supporting Information Equation S15) across environmen-
tal gradients. A shift in traits will be atttributable to a shift in the optimal phenotype across temperature gradients. If there is a strong convergence
in trait values around optimal trait values then trait distributions will be unimodal and characterized by positive kurtosis (Box ; Enquist et al., 2015).

II. Temperature as a driver. If temperature is a major driver of community composition then shifts in community trait distributions will be reflected
by increases in leaf P:N and PNUE (Kerkhoff et al., 2005) and LMA (Michaletz et al., 2016).

III. Measures of community trait skewness can reveal whether there are ongoing or recent directional shifts in community composition attribut-
able to a change in an environmental driver. For example, shifting communities attributable to increased warming from climate change would be
reflected by skewed trait distributions with either positive or negative skew depending on how mean community trait values change along environ-
mental gradients (see Box ; Norberg et al., 2001).

IV. Variation in NPP will scale as stand biomass raised to the 3/5 power. NPP and GPP will scale allometrically with biomass; biomass will be the
best predictor, followed by traits (if there is a sufficient shift in traits); see H1 in Figure 1 (West et al., 2009; Enquist et al., 2009).

V. Variation in GPP and NPP will be influenced primarily by stand biomass and temperature (Enquist et al., 2003) and characterized by a Q10 of
c. 2.5. However, if community-level growth traits (see Equation 3) covary with temperature, reflecting temperature acclimation and/or adaptation,
then the temperature sensitivity of NPP and GPP will be muted (Figure 1).

VI. Temperature acclimation and adaptation, if strong, will be reflected in an exponential shift in community weighted N:P and PNUE, resulting in
a weak linkage with temperature on NPP and GPP. Thus, the expected strength of the role of temperature in the scaling of NPP will be signifi-
cantly less than an E of c. 0.65 eV. Perfect temperature acclimation and/or adaptation will result in no significant influence of temperature (see H2
in Figure 1; Kerkhoff et al., 2005).

Note. These predictions are then modified via either hypothesis 1 or hypothesis 2 (H1 or H2, respectively), as detailed in Figure 1.
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Previous research has indicated that if the temperature sensitiv-

ities for respiration and photosynthesis are similar then the value of E,

although not well established, is expected to approximate 0.65 eV

(Allen, Gillooly, & Brown, 2005; Gillooly et al., 2001; Kerkhoff et al.,

2005). An E of c. 0.65 eV is equivalent to a Q10 of c. 2.5, so that physi-

ological rates increase c. 2.5 times for a 10 8C increase in temperature.

Over a 15 8C temperature gradient, a temperature sensitivity of E 5

0.65 eV will result in an approximately 3.6-fold proportional change in

biological rates. If, however, the temperature responses of respiration

and photosynthesis differ, the value of E has been proposed to be

closer to 0.32 (Allen et al., 2005). Thus, the value of E is expected to

fall between 0.65 and 0.32, which have been hypothesized to corre-

spond to respiration and photosynthesis, respectively.

Elaborations of MST have shown that b0 can linked to several key

traits, including nutrient composition (Allen & Gillooly, 2009; Elser,

Fagan, Kerkhoff, & Enquist, 2010; Gillooly, Charnov, West, Savage, &

Brown, 2002; Kerkhoff et al., 2005). Elser et al. (2010) hypothesize

that variation in growth rate can be modified by the traits that underlie

b0 . Specifically, b0 / / X
C

� �
, where C is the mass of carbon, and X is

the mass of a nutrient, such as nitrogen (N) or phosphorous (P). The

value of / is the efficiency of using X to generate C (e.g., photosyn-

thetic nutrient use efficiency, PNUE). Equation 1 shows that variation

in relative growth rate, l, will be influenced by plant size, m, tempera-

ture, T, tissue nutrient stoichiometry, X/C, and the nutrient use effi-

ciency, /. The model implicitly assumes that no other resources are

limiting (water availability, etc.) and that X/C, /, and m do not covary

with temperature. Equation 1 states that l will decrease to the 21/4

power with increases in plant size, but that the growth rate will

increase exponentially with increases in temperature.

Next, we extend MST to include a stoichiometrically based allo-

metic tree growth model to scale from the distribution of traits associ-

ated with plant relative growth rate to the gross primary productivity

(GPP) and NPP (see Supporting Information). This work builds on that

of Enquist et al. (2015) and focuses on the importance of two forest

community distributions, namely the distribution of traits and the distri-

bution of tree sizes. The importance of the community trait distribution

is reflected in the community weighted mean (CWM) value of <b0>

and the importance of the distribution of tree sizes reflected in the

total stand biomass,MTot, and its associated scaling exponent, a. Taking

Equation 1, we can next sum the relative growth rates, l, of all individ-

uals to then derive an equation for the scaling of the total stand metab-

olism, BTot, and productivity, NPP, with the total stand biomass, as

follows:

NPP / GPP / BTot / hb0i 5
3
MTot

� �a
(2)

where hb0i is the abundance weighted mean of the metabolic growth

coefficient that depends on a set of traits (see Supporting Information

Equation S11). Metabolic scaling theory predicts that for forests in

approximate demographic steady state, a is 3/5 or 0.60 (Enquist, West,

& Brown, 2009).

In the Supporting Information, we derive how traits influence plant

growth via their influence on the growth rate normalization; b0, that

includes the different hypothesized temperature dependencies of plant

growth, as follows:

b05hh � /A
L � mL

aL

� �21

� bL �
P
N

� �
ie2E=kT (3)

Here, h is the carbon use efficiency (the quotient of GPP and NPP), /A
L

is the photosynthetic nutrient use efficiency or PNUE on a per unit leaf

area basis (in grams of carbon per metre squared of leaf per gram of

nutrient per unit time), mL
aL

is the quotient of leaf mass, mL, and leaf area,

aL, or the leaf mass per unit area (LMA), and bL is the leaf mass fraction

reflecting variation in allocation to leaf biomass (leaf mass divided by

total plant biomass). A full derivation is given in the Supporting

Information.

3 | MATERIALS AND METHODS

3.1 | Census and abundance data

This study included 16 1-ha permanent plots along an elevation gradi-

ent in the departments of Cusco and Madre de Dios in southeastern

Per�u. The plots range in temperature from 25.2 8C at the lowest eleva-

tion plot to 9.0 8C at the highest elevation plot (see Supporting Infor-

mation Table S1). Plots also vary significantly in solar radiation,

precipitation and soil moisture, as well as above-ground standing bio-

mass (Malhi et al., 2017). All plots are located in areas that have rela-

tively homogeneous soil substrates and stand structure and show

minimal evidence of human disturbance (Araujo Murakami et al., 2014;

Girardin et al., 2014).

Of these plots, we selected 10 plots that spanned the elevation

gradient and where detailed measures of plant traits and physiology

could be measured accurately (Supporting Information Table S1). Six of

the plots are montane plots in the Kos~nipata Valley, spanning an eleva-

tion range from 1,500 to 3,500 m a.s.l., two are submontane plots

located in the Pantiacolla front range of the Andes (range 600–900 m

a.s.l.) and two plots are found in the Amazon lowlands in Tambopata

National Park (range 200–225 m a.s.l.). The lowland plots were estab-

lished in the early 1980s, and the montane ones between 2003 and

2013. All of these plots belong to a group of permanent 1-ha plots

operated by the Andes Biodiversity Ecosystems Research Group

(ABERG; http://www.andesconservation.org) and that are part of the

ForestPlots (https://www.forestplots.net/) and Global Ecosystems

Monitoring (GEM; http://gem.tropicalforests.ox.ac.uk/projects/aberg)

networks.

Plots have been measured annually for carbon allocation and

cycling, following the standard GEM Network protocol (Marthews

et al., 2014). As such, gross and net primary productivity estimates (Gir-

ardin et al., 2010; Malhi et al., 2017) and comprehensive descriptions

of the carbon cycle (Malhi et al., 2017) exist for all of these plots (Girar-

din et al., 2013; Huasco et al., 2014; Malhi et al., 2014, 2017). Within

each plot, all stems � 10 cm diameter at breast height were tagged,

sized and identified to species level in the 2013 tree census, and then

recorded in the ForestPlots database. These individuals were examined

and potentially renamed by taxonomic experts at the Carnegie Institute
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(http://spectranomics.ciw.edu/species). A full description of the taxo-

nomic standardization methodology is given by Blonder et al. (2017).

Additional details of the plot methodology are provided in the Support-

ing Information.

3.2 | Trait sampling

From April to November 2013, we measured plant traits as part of the

CHAMBASA (CHallenging Attempt to Measure Biotic Attributes along

the Slopes of the Andes) project. Based on census data for 2013 or the

most recent year before 2013, we sampled tree species that contrib-

uted to 80% of total plot basal area (see Supporting Information). For

each sampled species in each plot, five individual trees in upland sites

and three individual trees in lowland sites were chosen for sampling.

Using single-rope tree-climbing techniques, we sampled one fully sunlit

canopy branch and a fully shaded branch where possible, each at least

1 cm diameter, from each tree. From each branch, we measured five

leaves from each species. Overall, we ended up analysing 3,013 individ-

ual leaves for leaf traits. Data are available in Shenkin et al. (2017) and

additional methodological detail is given in the Supporting Information.

These leaves were sampled from 1,025 branches from 620 trees, com-

prising 180 tree species from the 10 plots.

We focused on the following seven leaf traits that underlie the

allometric normalization of the scaling of plant growth, b0: leaf mass

per unit area (LMA); leaf phosphorus concentration (%P); total leaf

nitrogen concentration (%N); light-saturated leaf photosynthetic rate

under saturating light (in micromoles of carbon dioxide per metre

squared per second); total leaf carbon concentration (%C); and from

these traits we calculated the photosynthetic nitrogen use efficiency

(PNUE) and the leaf P:N ratio (see Supporting Information for addi-

tional information on methods). All measures of leaf stoichiometry and

LMA were conducted at the University of Arizona.

3.3 | Estimating trait distributions

To test the predictions of trait-based scaling theory, we calculated two

measures of community weighted trait values. The first method

focused on the most abundant or dominant species in each plot (Sup-

porting Information). We used the traits measured from species that

contributed to 80% of basal area within each plot. The second method,

outlined by Enquist et al. (2015), bootstrapped the trait data so as to

incorporate the full spectrum of trait variation within and across spe-

cies. We used this method to estimate better the moments of each for-

est plot trait distribution (mean, variance, skewness and kurtosis) and

calculate 95% confidence intervals (CIs) for each moment. This method

uses parametric bootstrapping (Efron & Tibshirani, 1993) to approxi-

mate better how intraspecific variation influences the community trait

distribution (see Supporting Information).

3.4 | Statistical analyses

All analyses were performed in the R programming environment (R

Core Team, 2013). A description of the functions and packages used

are detailed in the Supporting Information.

We assessed the importance of CWM trait values as measured by

the mean of the community trait distributions of LMA, and leaf P, N, C,

photosynthesis, and the calculated values of P:N and PNUE. We calcu-

lated the CWM trait value by averaging the mean species trait values

that are each multiplied by the species measure of dominance (e.g., cover,

biomass, abundance; Garnier et al., 2004; Grime, 1998). For these analy-

ses, we used the notation subscript a to specify mean values calculated

by this first method (so <P:N>a corresponds to the CWM P:N value

from these most abundant species). Second, we assigned trait values to

all individuals within each forest plot and calculated a whole-community

trait average, as well as the higher moments of the trait distribution, using

our trait parametric bootstrapping procedure (see Supporting Informa-

tion). For this second method, we used the notation subscript c to specify

the community mean values estimated by the resampling procedure (so

<P:N>c corresponds to our estimate of community trait mean P:N value

from all individuals from within the entire community, including trait esti-

mates for all of the rare species in the community).

4 | RESULTS

Multivariate analyses using either the mean dominant and community

traits, <trait>a, or the mean community bootstrapped traits, <trait>c,

showed that the best abiotic predictor of variation in the shift of trait

composition was mean annual temperature (see Supporting Informa-

tion Tables S2 and S3; Figures S1 and S2). Consistent with predictions

of hypothesis 2 (H2; Table 1; Figure 1) and recent work by Asner et al.

(2017), there is a coordinated multivariate shift in the CWM of several

temperature-related traits. For the mean dominant community traits,

<trait>a, the first principal component, PCA1a, explained 42.9% of trait

variation, and the second component 21.04%. Trait loadings along

PCA1 reflect the ‘cold–warm’ continuum of leaf economics. Commu-

nity weighted trait values of LMA, PNUE, or /A
L , and P:N show the

most positive loadings, whereas leaf N and C show the most negative

loadings (Supporting Information Figure S2; Tables S2 and S3). Of all of

the environmental variables, the best predictor of variation in plot

PCA1a trait loadings was mean annual temperature (t-value523.193;

p5 .013; r25 .56; see Supporting Information Figure S2b,c).

By itself, solar radiation (in gigajoules per metre squared per year)

was not a significant predictor of multivariate community trait shifts (t-

value520.604; p5 .604; r25 .06; see Supporting Information Figure

S1). However, a model containing both temperature and solar radiation

was a slightly better model, explaining shifts in PCA1a based on the cor-

rected Akaike information criterion (AICc; adjusted R25 .80, p5 .017).

Other variables [precipitation (in millimetres per year), soil moisture (as a

percentage), aspect (in degrees) and slope (in degrees)] were not signifi-

cant. Similar results were also found for the community bootstrapped

CWMc (Supporting Information Figure S1). However, variations in PCA2c

scores were negatively correlated with soil moisture. The CWM values of

leaf phosphorus, <%P>c, and photosynthetic rate or <photo>c had the

most negative and positive loadings, respectively, on PCA2c (Supporting

Information Table S3), indicating that variation in soil moisture might also

be an important, although secondary, driver of those CWM trait values.
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Bivariate correlations show that many of the traits of the most

abundant tree species per community, a, as well as the whole-

community trait distribution, c, covary with temperature (Figures 2 and

3; Supporting Information Figures S1 and S2). Consistent with predic-

tions from H2 (Figure 1), mean community traits that underlie the

growth equation <P:N>, <LMA> and <PNUE>, all shift along the ele-

vational gradient (Table 2; Supporting Information Tables S4 and S5).

The shifts in PNUE and photosynthesis are strongly correlated with

each other (Figure 1a,b; r25 .764; p5 .001), indicating that shifts in

leaf P:N with increased elevation (decreases in temperature) are also

associated with greater photosynthetic efficiency that together appear

to result in similar values of leaf-level photosynthesis. We observe

decreases in N with temperature, but that P content is independent of

temperature. Thus, compared with warmer forests at lower elevations,

colder forests tend to be composed of leaves with higher values of

LMA, greater amounts of P relative to N, higher PNUE (as measured by

/A
L or grams of carbon dioxide per metre square of leaf per gram of

nutrient per unit time) and increased photosynthetic rates per unit

nitrogen, but approximately constant rates of photosynthesis (in grams

of carbon dioxide per metre square of leaf per gram of nutrient per

unit time). We also observed significant negative shifts in <%N>c

(r2 5 .47, p5 .028). Leaf <%C>c also tended to decrease across the

elevational gradient, but it was marginally significant (r2 5 .33, p5 .08).

Consistent with theory (see Table 1 VI), our analyses indicate that

the community mean trait values <P:N>c, <PNUE>c and <LMA>c, all

shift exponentially with temperature across the gradient (Table 2; Sup-

porting Information Table S6). Potential exponential temperature

dependences (e.g., a modified ‘Arrhenius plot’; see Gillooly et al., 2001;

White, Xiao, Isaac, & Sibly, 2012) are revealed by plotting the natural

logarithm of biological response (here the community mean trait value

or GPP, NPP) versus the inverse product of the Boltzmann constant

and temperature as measured in kelvin (1/kT). The fitted linear slope

then is an estimate of E or how sensitive the biological response is to

temperature. For these traits, we estimate E to be 0.16, 0.15 and 0.19

eV, respectively (Table 2). Consideration of the 95% CIs for <P:N>c

indicates that E ranges from 0.03 to 0.28 ev.

Across the elevation gradient, analyses of the shape of the

community distribution (variance, skewness and kurtosis), as esti-

mated by our trait bootstrapping method, show significant trait

structuring (Figure 3; Supporting Information Figure S3; Table S7).

All community trait distributions, except for %C, are characterized

by positive kurtosis (see Figure 3), indicating strongly peaked trait

distributions. Furthermore, except for %C, all traits also show posi-

tive skewness, with %P and LMA showing the strongest positive

skewness. Note that symmetrical distributions are characterized by

skewness values of zero, and kurtosis values greater than zero indi-

cate a more ‘peaked’ distribution than a normal distribution charac-

terized by skewness and kurtosis of zero.

The observed patterns in the higher moments of the trait distribu-

tions are consistent with several predictions from theory (Box 1; Table

1). First, consistent with theory (Box 1a), traits associated with growth

rate tended to cluster or converge to a common site ‘optimal’ spe-

cific value. Furthermore, community trait distributions tended to be

unimodal (Supporting Information Figures S3 and S4), with many

FIGURE 2 Variation in community weighted trait values for the (a) most abundant species within each forest plot; and (b) for all species

within the forest plot. Across the gradient, we see significant shifts in the community weighted mean for the dominant species, <trait>a,
and estimates of the entire community trait mean, <trait>c, of leaf P:N, leaf photosynthesis and photosynthetic nitrogen efficiency or
PNUE. These shifts in leaf P:N are reflected in increased leaf PNUE, suggesting that P-mediated increases in N productivity may directly
offset the temperature dependence of net primary productivity
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traits (C, P, photosynthesis and LMA) showing positive kurtosis (Fig-

ure 3). Second, consistent with the expectations of Feeley et al.

(2011) and predictions from theory (Box 1b and c), the community

mean values of LMA (as well as P, N and photosynthesis) show

skewed distributions (see Figure 3), indicating that forests along the

elevational gradient are directionally shifting in trait composition in

response to directional shifts in temperature but that the trait com-

position and dominance are lagging the shift in temperature attribut-

able to changing climate; see Box 1 and Table 1 III). Third, as a

result, consistent with theory (Box 1c), the skewness values of

<LMA>c for all forest plots were positive, indicative of a dynamical

shifting community in response to changing temperature. Few of the

traits showed directional trends in the higher moments with eleva-

tion. Exceptions included photosynthesis, which showed decreases

in skewness and kurtosis with increasing elevation, and the variance

in N decreased with elevation.

To assess predictions of H2 (Figure 1) further, we next assessed

whether the observed elevational shifts in community trait means were

associated with shifts in the metabolic traits that underlie the plant

growth normalization b0 (see Supporting Information Equation S16).

Specifically, we assessed whether the observed covariation in commu-

nity trait values with elevation and temperature reflect selection for

temperature adaptation and acclimatization, resulting in equalization of

leaf photosynthesis and plant growth rates. In short, if the traits of the

tree growth normalization b0 [PNUE (/A
L Þ, LMA (mL

aL
Þ and P:N; see Sup-

porting Information Equation S15] covary with temperature (T), they

may negate or diminish the expected kinetic effects of temperature on

ecosystem production (GPP and NPP) where NPP / GPP / e
20:65
kT (see

Equation 2; Supporting Information Equation S16).

To assess whether the observed covariation in plant growth traits

with temperature is consistent with H2 (Figure 1), we estimated the

community or plot average value of b0 (see Equation 3) by multiplying

FIGURE 3 Assessing shifts in the statistical moments (mean, variance, skewness and kurtosis) of the community trait distribution across elevation.
Moments were generated for five community leaf traits (N, P, C, photosynthesis and LMA) for each of the 10 forest plots sampled for traits across the
Per�u elevational gradient. We generated 1,000 bootstrapped community-wide trait distributions for each plot by sampling from each species’ intraspe-
cific trait distribution for individuals of species measured across the same Peruvian gradient. The moments describing the shape of the trait distributions
(variance, skewness and kurtosis) and their 95% confidence intervals (shown by the dark vertical lines) are reported around each moment value. Confi-
dence intervals are calculated based on the 1,000 bootstrap replicates for each plot (see Materials and methods). Across all forest plots, all traits, except
for leaf C, were characterized by skewed community distributions (skewness > 0) and distributions that were more peaked than expected by normal
distribution (kurtosis > 0) or even a uniform or even distribution (kurtosis521.2)
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the community abundance weight of five growth traits

b0� < /A
L > � < mL

aL
>21� < P

N > �hbLi
� 	

, but here we did not include

the expected temperature dependency, e
20:65
kT . For trees, we used an

estimate of bL; the leaf mass fraction, using a value of 0.1 from Poorter

et al. (2012). We plotted this estimate of the growth normalization hb0i
as a function of temperature. Our results indicate that hb0i is independ-
ent of temperature (Figure 4). If decreases in temperature reduced tree

growth rates then we would have expected a negative relationship in

Figure 5, with a slope approximating 20.65. But this is not what we

see. Indeed, our results support hypothesis H2, indicating that the

observed shifts in plant growth traits with temperature in part negate

the kinetic effects of temperature on plant growth.

Theory also predicts that NPP / GPP / hb0ie2E=kT 5
3MTot

 �a

,

where the value of a should approximate 3/5 or 0.60 (see Table 1 IV)

in forests close to resource and demographic steady state (Duncanson,

Dubayah, & Enquist, 2015; Enquist et al., 2009). Also, NPP and GPP is

expected to vary exponentially with temperature as NPP / GPP

/ e2E=kT with an estimate of E of c. 0.65 eV; (Allen et al., 2005;

Enquist et al., 2003; Gillooly et al., 2001; Perkins et al., 2012; Yvon-

Durocher, Jones, Trimmer, Woodward, & Montoya, 2010). These pre-

dicted relationships should become more apparent after controlling for

covariation between temperature and standing biomass, as well as

potential variation in b0. Tables 2 and 3, Supporting Information Tables

S8 and S9 show the results of fitting various models where the values

of a and E could vary as well as assessing the relative importance of

other potential drivers of variation in NPP and GPP. For the models

that best explained variation in NPP and GPP (using either adjusted R2

or AICc), the observed value of the scaling exponent a overlapped with

the theoretical prediction of 3/5 or 0.6 (see Equation 2). The observed

values of a were much closer to prediction and the models with higher

adjusted R2 values occurred when the covariate of site temperature

was included (Supporting Information Table S5; Figure 5).

Consistent with theory (H2), variation in stand biomass is a primary

determinant of variation in ecosystem functioning (Figure 4; model r2

values range from .65 to .49; Table 3). Adding temperature improves

the predictive ability of the model (adjusted R2 values of .66 and .71),

indicating that the best predictors of variation in NPP and GPP are

stand biomass followed by temperature. These results also support the

prediction that two variables, stand biomass and environmental tem-

perature, are the best predictors of variation in ecosystem production

(Figures 4 and 5). The above results are also supported by assessing 18

separate models that include different potential combinations of cate-

gories (stand biomass, traits and environmental drivers) as well as each

category separately (Supporting Information Tables S1, S8 and S9).

5 | DISCUSSION

Previous work by Malhi et al. (2017) has shown that across this eleva-

tion gradient, tropical forest NPP and GPP decrease with elevation and

correspondingly increase with temperature. However, this past work

has also shown that the total forest biomass also covaries with temper-

ature across the elevation gradient. Our results also show that the traitT
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composition, the total biomass and ecosystem productivity all covary

with each other and shift directionally with temperature (Tables 2 and

3; Supporting Information Tables S4–S6; Figures 3 and 5). These

changes reflect an overall multivariate shift in physiological functioning

of tropical forests (Figure 2) best predicted by temperature (Figure 1b;

Supporting Information Figures S1 and S2). Compared with warmer

lower elevation forests, colder high-elevation forests are composed of

leaves with higher values of LMA, greater amounts of P relative to N,

and higher PNUE. These results are consistent with several recent

studies documenting some trait correlations in tropical forest canopy

traits across elevation (Asner & Martin, 2016; Malhi et al., 2017) where

tropical forest canopy LMA, PNUE, non-structural carbohydrates (NSC)

and P concentrations tend to increase with elevation, but the mean

foliar N declines. Sometimes these studies found that foliar P showed

no trend with elevation (Asner et al., 2014), as we find here. Although

these studies did not assess shifts in leaf P:N, our results do generally

support the finding that leaf P:N increases with decreases in tempera-

ture (Elser et al., 2010; Hedin, 2004; Swenson et al., 2012).

Generally, the underlying drivers of several of the traits we have

measured here, including LMA and leaf chemistry, include a diverse

array of climate and soil fertility factors (Asner & Martin, 2016; Poorter,

Niinemets, Poorter, Wright, & Villar, 2009). For example, Cordell, Gold-

stein, Mueller-Dombois, Webb, and Vitousek (1998) have shown that

temperature and radiation, and perhaps humidity, are among the most

important drivers of LMA on tropical elevation gradients (Cordell et al.,

1998). Our analyses indicate that these shifts in community trait means

are approximately exponential with temperature (Table 2). Fitting a

Boltzmann–Arrhenius function to these relationships reveals that these

community traits are characterized by temperature responses (E) of

c. 0.15 (see Table 2). Importantly, these shifts have resulted in approxi-

mately constant rates of leaf photosynthesis (Figure 3).

Our results support, in part, the predictions of hypothesis H1 (see

Figure 1). First, a fit of the predicted equation from MST,

ln GPPð Þ / ln NPPð Þ5b2 E
kT1aln MTotð Þ, where b is a constant and a is

the ecosystem scaling exponent hypothesized to be c. 3/5 or 0.6

(Enquist et al., 2009; Michaletz, Cheng, Kerkhoff, & Enquist, 2014),

explains 68 and 73% of the variation in GPP and NPP, respectively (see

Table 3). All the other potential hypothesized drivers of NPP and GPP

variation did not explain as much variation and did not compete as well

as the model with only stand biomass and temperature (see Supporting

Information Tables S7 and S8). Second, after controlling for covariation

with temperature, the fitted value of a was indistinguishable from the

predicted value of 3/5 or 0.60 (Figures 1 and 5; Table 3; Supporting

Information Tables S7 and S8). However, although we did find that

temperature had a significant effect on variation in NPP and GPP as

hypothesized in H1, the functional response was significantly shallower

than predicted by H1. Specifically, the predicted temperature response

of NPP and GPP did not support the a priori hypothesis (H1; Figure 1)

of E c. 0.65 eV or even E c. 0.32 eV if photosynthesis exhibited differ-

ing temperature responses. Instead, the observed change in NPP and

GPP is characterized by a much shallower temperature function with

E c. 0.16 and 0.20 eV for GPP and NPP (95% CI 5 0.07–0.32 and 0.05–

0.26, respectively; Table 2; Supporting Information Tables S7 and S8).

Support for H2 (Figure 1) is given by the observed directional shift

in the many growth traits that underlie the growth normalization, b0

(Figure 2), the resulting approximate constancy of the community tree

growth normalization <b0> across the gradient (Figure 5c), and the

very shallow temperature response of NPP and GPP (Figure 5a,b).

Hypothesis H2 states that a shift in growth traits such as <LMA> will

help to stabilize leaf temperatures around their physiological optima

(Michaletz et al., 2016), and a shift in growth traits such as <P:N> and

<PNUE> can also compensate rates of growth with decreases in

TABLE 3 Scaling of NPP and GPP with total stand biomass and multiple model with Boltzmann temperature

Dependent variable GPP NPP NPP GPP

Predicted scaling exponent, a53=5 0.6 0.6 0.6 0.6

Observed scaling exponent, a 0.79*** 0.73*** 0.49** 0.59***

95% CI (0.50–1.07) (0.36–1.10) (0.15–0.83) (0.31–0.88)

Predicted temperature sensitivity, E (eV) 0.65–0.32 0.65–0.32

Observed temperature sensitivity, E (eV) 0.21** 0.16**

95% CI (0.07–0.35) (0.04–0.28)

Fitted intercept 20.20 21.05 8.38** 7.02**

95% CI (21.48 to 1.09) (22.70 to 0.59) (1.78–14.98) (1.48–12.57)

Observations 16 16 16 16

Adjusted R2 0.65 0.49 0.66 0.73

Note. Variation in NPP and GPP are well fitted by models that include either standing biomass alone (first two columns) or standing biomass and envi-
ronmental temperature (last two columns). Estimates of the scaling exponent, a, come from fitting the scaling of NPP or GPP with total stand biomass.
Temperature sensitivities of each trait, E, are from fitting the Boltzmann function, e2E=kT . The associated 95% confidence intervals (CIs) for E and the
metabolic scaling exponent are given in parentheses. Models with both total stand biomass and temperature resulted in better fits (higher adjusted R2

and lower corrected Akaike information criterion value). Theoretical predicted values for a and E are also listed. The predicted value of E50.65–
0.32 eV is when growth traits in the growth normalization b0 do not covary with temperature. *p< .1; **p< .05; ***p< .01.

1366 | ENQUIST ET AL.



temperature (Kerkhoff et al., 2005). Indeed, consistent with this expec-

tation, we find that the community average rate of leaf photosynthesis

does not vary significantly with temperature. According to the ‘growth

rate hypothesis’ (Elser et al., 2000; Kerkhoff et al., 2005), selection to

increase growth rates because of shorter growing seasons and/or to

upregulate metabolism and growth is reflected in organismal P:N ratios.

Together, shifts in these traits could then lead to a maintenance of

approximately constant rates of photosynthesis and rates of whole-

plant growth rate despite changes in temperature (Kerkhoff et al.,

2005; Niklas et al., 2005), as we observe here.

Our estimates of the temperature sensitivity of NPP and GPP are

reflected by the fitted values of E. The observed values of E are lower

than the proposed range of value of b. 0.65–0.32 eV, indicating that the

temperature response of forest productivity is very shallow. Accounting

for covariation with total biomass, MTot, shows that the temperature

sensitivity or E of for both GPP and NPP as c. 0.15–0.21 eV (see Tables

2 and 3; and Supporting Information Tables S7 and S8; Figure 5). In

other words, going from our coldest high-elevation site (1/kT541) to

our hottest lowland site (1/kT539), a value of E of c. 0.15eV would

equate to a 1.35-fold increase in productivity attributable to increases

in temperature. In contrast, if plant growth traits did not covary with

temperature and the temperature sensitivity of productivity was

E50.65 eV then this would lead to a 3.67-fold proportional increase in

NPP and GPP. Thus, we estimate that the NPP and GPP observed in

FIGURE 4 Modified Arrhenius plots of variation in forest biomass-corrected variation in GPP, NPP and the metabolic normalization, b0.
These plots reveal the functional role of temperature on variation in (a) GPP, (b) NPP and (c) the metabolic normalization, b0, between for-

est plots (White et al., 2012). In (a) and (b), the y axes plot the natural logarithm of the quotient of annual GPP or NPP and M0:6
Tot obtained

from rearrangement the predicted scaling function in Equation 2 (i.e., ln GPP
M0:6

Tot

� 	
/ ln NPP

M0:6
Tot

� 	
52E � 1

kT, with slope E and independent variable 1/

kT). The fitted slopes yield an estimate of the temperature sensitivity, E, for GPP and NPP where EGPP50.158 (95% CI 0.045–0.270;
r2 5 .349) and ENPP50.195 (95% CI50.0619–0.329; r2 5 .371), respectively. The observed temperature sensitivities for both GPP and
NPP are much shallower than the expectation of EGPP and ENPP50.65 (the dotted line in both graphs). In (c), the value of b0, the tree

growth rate normalization, was estimated by multiplying the community average of the three traits b0� < /A
L > � < mL

aL
>21� < P

N > �hbLi
� 	

.

For trees, we used an estimate of bL,the leaf mass fraction of 0.1 (Poorter et al., 2012). As b0 does not significantly change with tempera-
ture, the observed shifts in the traits that underlie b0 with temperature (Figure 3) support hypothesis H2, where covariation in these traits

with temperature will lower the kinetic effects of temperature on plant growth, which will then decrease EGPP

ENQUIST ET AL. | 1367



our coldest sites is c. 2.3 times more than what would be expected if

there was not the observed covariation in community growth traits.

Our results also support claims by Feeley et al. (2011) that

increases in historical temperature attributable to climate change

appear to be responsible for observed elevational shifts in the distribu-

tion of tree species (see also Bush, Silman, & Urrego, 2004). However,

Feeley et al. (2011), working across this same elevational gradient, did

not provide a mechanistic basis for these conclusions. The assumption

is that observed upward migration of trees is driven by species sorting

because of their different trait–temperature optima (Bush et al., 2004).

An important finding is that the observed mean rate of change in the

species composition of these plots is less than predicted from the tem-

perature increases for the region (Feeley, 2012; Feeley et al., 2011).

Thus, according to theory (Box 1), for traits more closely matched to

plant growth, upwardly migrating tree species would result in skewed

community trait distributions (Figure 3), consistent with the prediction

that the trait composition of these forests is not matched to the local

climate. As predicted, the skewness values for LMA are positive across

the gradient, consistent with the expectation that these forest com-

munities are currently shifting directionally to match their LMA at a

given temperature (Box 1).

An important question raised by our analysis is, given the approxi-

mate constancy of b0 (Figure 5) that supports H2, why do we still

observe a shallow temperature dependence to variation in NPP and

GPP (Figures 4 and 5)? Three possibilities might explain the shallow but

non-zero temperature response of NPP and GPP:

First, other climate and historical constraints, such as increased dis-

turbance history associated with landslides at higher elevations and/or

increased importance of fog inundation and cloud cover at the higher

elevations (see Malhi et al., 2017), may further reduce productivity at

higher elevations.

Second, recent analysis of an individual-based forest model (Fyllas

et al., 2014), applied to these same forest plots and using a carbon-

based version of the MST growth function, suggests that differences in

light availability across the gradient may explain residual variation in

NPP not explained by total biomass and temperature (Fyllas et al.,

2017). Thus, the weak temperature response of NPP could be driven

by the interaction between resource availability and the kinetic temper-

ature response of photosynthesis (see Supporting Information). For

example, there is an indication that when light, nutrients and/or CO2

are limiting, the temperature dependence of photosynthesis may be

much weaker (see figs 3 and 4 in Berry and Bjorkman, 1980). Although

FIGURE 5 Partial regression plots illustrating relationships between annual gross primary productivity (GPP), net primary production (NPP)
and individual covariates from Equation 8 for 18 woody plant communities across the Peruvian elevational gradient. Plots show the direct
relationship (slope and variance) between GPP, NPP and each covariate while controlling for the influence of all other model covariates. (a,
c) Annual temperature, T. (b, d) Stand biomass, MTot. In general, variation in above-ground biomass and mean annual temperature explain
most of the variation in ecosystem NPP and GPP. The predicted scaling function NPP / GPP / e2E=KTMa

Tot explains 71 and 66% of the vari-
ation in NPP and GPP, respectively, and the fitted scaling exponent, a, for the scaling of NPP and GPP with total above-ground biomass is
indistinguishable from the value of 0.6 predicted by theory (see Tables 1–3; Supporting Information Tables S8 and S9). However, the influ-
ence of temperature on NPP and GPP is much more muted than expected. The fitted value of the temperature sensitivity, E, is significantly
lower than the expectation of E50.65–0.32 eV, and c. 0.21 and 0.16, respectively (see Supporting Information Tables S8 and S9)
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our results do not support a conclusion of Fyllas et al. (2017) indicating

an important role of solar radiation in explaining the decrease in forest

productivity (Supporting Information Tables S2, S8 and S9), we do

show that both solar radiation and temperature are important predic-

tors of the observed shift in community-level traits (PCA1a) in mean

community trait values (see Discussion).

Third, a shallow temperature response of NPP and GPP may

reflect a lagging community response to directional climate change and

increasing temperature. For example, the observed rate of trait shift

across the temperature gradient is approximately exponential across

the temperature gradient (Table 2), but the reported rates of tree

migration in response to observed warming in the study by Feeley

et al. (2011) are approximately constant across the gradient. A differ-

ence between these two rates would then increasingly lead to higher

elevation forests being more ‘lagged’ between the new trait ‘optimal’

trait value, zopt, in a warming world (Box 1) and the current mean trait

value, zmean, of the community. If correct, then the lower NPP and GPP

in the colder forests reflects the dominant trait composition of higher

elevation communities being more lagged in their trait values and fur-

ther away from trait–environment optimal matching. Thus, we specu-

late that the observed shallow temperature dependence of NPP and

GPP (Figure 5) might reflect an increasing hysteresis in the functioning

of higher elevation, colder forests in response to climate change.

6 | CONCLUSIONS

The Peruvian elevation gradient provides a novel natural laboratory for

assessing several predictions of trait-based scaling theory. The theory

(Box 1; Table 1; Figure 1) is unique because it provides a general theo-

retical framework for trait-based ecology by integrating ecology, stoi-

chiometry, allometry, metabolic scaling theory and physiological

approaches to plant ecology and global change studies. Furthermore, it

underscores the importance of the shapes of two distributions, namely

the frequency distribution of plant sizes (via the ecosystem scaling

exponent) and the frequency distribution of traits (via the moments of

distribution), as being central to ‘scaling up from traits’ and predicting

variation in ecosystem metabolism (Enquist et al., 2003; Michaletz

et al., 2014). Indeed, our results indicate that variation in ecosystem

productivity is characterized by a common allometric scaling relation-

ship predicted by theory (Figure 5; (Kerkhoff & Enquist, 2006; Micha-

letz et al., 2014). The theory also provides a quantitative foundation to

show how (a) the diversity of plant form and function and (b) direc-

tional shifts in climate are reflected in the shape of trait distributions.

Our results highlight the fundamental role of temperature as a crit-

ical driver of tropical forest trait composition. More importantly, the

theoretical foundation detailed here and the empirical results indicate

that knowledge of stand biomass and canopy chemistry can predict

variation in NPP and GPP in consistent and predictable ways that could

be integrated into dynamic global vegetation models (DGVMs; Fisher

et al., 2015; Fyllas et al., 2014). However, such insights have yet to be

incorporated into global vegetation models (Marthews et al., 2012) as

these models predict a high sensitivity of tropical GPP to temperature

(Galbraith et al., 2010). Our work indicates that global change models

incorporating information about the shape of community trait distribu-

tions and the size distribution via the total stand biomass can improve

predictions of future ecosystem function (see also Fyllas et al., 2017).

Together, our results and those of Fyllas et al. (2017) show that

the observed shifts in leaf traits almost entirely compensate for the

expected physiological decline of canopy photosynthetic rates with ele-

vation, leading to a less-than-expected decline of productivity with ele-

vation. However, the two studies differ in posited explanations for the

residual observed slight decline in productivity with temperature. Fyllas

et al. (2017) fitted the carbon-based trait growth equation from MST

(Enquist et al., 2007) with additional assumptions of light limitation on

photosynthesis. The present study does not make these assumptions.

Our approach instead: (i) extends MST to provide new mechanistic

analytical derivations to link how differences in leaf physiology, plant

tissue nutrient stoichiometry and tree size influence tree growth and

forest productivity; (ii) questions the primary role of solar radiation on

directly driving variation in productivity across this elevational gradient

via reductions in photosynthesis; and (iii) points to the importance of

covariation between photosynthetic nutrient use efficiency, /, or

PNUE, and environmental temperature in mediating variation in tropi-

cal forest productivity observed across this gradient.

Combined with the findings of Kerkhoff et al. (2005) and

Enquist et al. (2007), our results are consistent with the hypothesis

(H2; Figure 1) that many directional changes in organismal traits

across geographical gradients can be linked to the plant growth rate

normalization, b0. An approximate constancy of b0 means that trees

in the warm lowlands grow at about the same mass-corrected rate

as trees in the colder high-elevation forests. Ultimately, the

observed approximate constancy of b0 across an impressive

c. 16.2 8C temperature gradient reflects how selection and/or com-

munity species sorting has resulted in the up- or downregulation of

metabolism via respiration and/or photosynthesis. Thus, a more

powerful test of several of our findings is to link the observed shift

in traits ultimately to the temperature dependencies of respiration

and photosynthesis (Yvon-Durocher et al., 2012) and to our under-

standing of how temperature influences photosynthesis and respira-

tion within and across environments (Atkin, Loveys, Atkinson, &

Pons, 2006, 2015; Berry & Bjorkman, 1980; Heskel et al., 2016). In

addition, future work should assess the generalities of our findings

by asking whether similar trait shifts in communities and ecosystem

responses occur across other broad temperature gradients. Several

studies do suggest that similar trait shifts are observed across tropi-

cal elevation and latitudinal (temperature) gradients (Asner & Martin,

2016; Hedin, 2004; Kerkhoff et al., 2005; Reich & Oleksyn, 2004).

Nonetheless, our paper and the study by Fyllas et al. (2017; who

also worked along this same Per�u gradient) are the only studies so

far to test predictions from trait-based scaling theory.

In sum, the observed shifts in tropical forest trait distributions are

consistent with the expectations from trait-based ecology that (I) trait

matching with the environment is widespread in both space and time

(Ackerly, 2003; Westoby, Cunningham, Fonseca, Overton, & Wright,
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1998); and that (ii) it originates from evolutionary and ecological proc-

esses that lead to the local dominance of specific phenotypes that max-

imize leaf carbon gain and whole-plant growth rates in variable

environments (Chabot & Hicks, 1982; Pearcy et al., 1987); but that (iii)

recent climate change has probably resulted in tropical forest commun-

ities with species trait composition increasingly in disequilibrium with

the current climate (Blonder et al., 2015; Davis & Shaw, 2001; Sven-

ning & Sandel, 2013). Together, trait-based scaling theory provides a

quantitative framework to link pattern and process in communities and

ecosystems via traits. It also allows us to assess the role of temperature

as a primary driver of plant functional turnover.
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