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A B S T R A C T

Globally, forests are being subjected to numerous threats, including climate change, wildfires, and insect and
disease outbreaks, among others. Satellite optical remote sensing data have been widely utilized in early de-
tection of tree and forest stress by estimating water status metrics such as the leaf Equivalent Water Thickness
(EWT). This estimate, however, is affected by soil characteristics and understory vegetation and often ignores the
effects of the fine-scale heterogeneity of canopy structure and leaf water content. Such effects can be better
understood by studying the EWT distribution in three dimensions. In this study, Terrestrial Laser Scanning (TLS)
intensity data from the commercially-available Leica P20 and P40 instruments (808 nm and 1550 nm respec-
tively) were combined in a Normalized Difference Index (NDI). NDI was used to map EWT of 12 trees in three
dimensions from floor to canopy in a mixed broadleaf forest plot (Wytham Woods, UK). The average error in
EWT estimates across three species was less than 8%. The three dimensional point clouds revealed that, in this
snapshot, EWT changes vertically, usually increasing towards canopy top. The proposed method has the po-
tential to provide predawn EWT measurements, is independent of solar illumination, and can lead to a better
understanding of the factors affecting satellite estimation of EWT.

1. Introduction

Forests are of great importance for humankind and the environment
because of the essential ecological, economic and social services they
provide (Yao et al., 2014). They play a major role in the global carbon
and hydrological cycles (Pan et al., 2011), and influence the climate as
a result of exchanging water, energy, carbon dioxide, and other che-
micals with the atmosphere (Bonan, 2008). However, natural and an-
thropogenic threats, such as climate change, drought, disease infec-
tions, pest infestations, wildfires, land use change and deforestation,
threaten forest health (Lewis et al., 2015; Millar and Stephenson, 2015).
Forest health monitoring is critical to understand how forests react to
such stressors (Ferretti, 1997; Trumbore et al., 2015), and also for early
detection of drought stress, symptoms of disease, and risk of wildfire
(Meentemeyer et al., 2008).

Optical remote sensing data, airborne and spaceborne, have been
widely adopted in forest health monitoring to overcome the limitations
of in situ approaches (destructive methods and field spectroscopy),
which are time and effort consuming and impractical for large areas
(Dash et al., 2017; Pu et al., 2003). Methods that utilize multispectral
and hyperspectral optical remote sensing data can provide estimates of

vegetation water status metrics, such as the leaf Equivalent Water
Thickness (EWT) (g cm−2), at landscape level (Clevers et al., 2010;
Colombo et al., 2008). EWT can reflect the physiological status of ve-
getation, as water in vegetation is involved in all physiological pro-
cesses, directly or indirectly, and lack of water affects plant transpira-
tion rate, photosynthesis rate, and carbon gain (Carter, 1993; Lisar
et al., 2012; Peñuelas et al., 1994). EWT can also be linked to other key
vegetation water status metrics, including Canopy Water Content
(CWC) (kg m−2), a parameter of interest in studying water cycle and its
role in the global climate change (Clevers et al., 2010), Fuel Moisture
Content (FMC), an important metric in prediction and modelling of
forest wildfire (Danson and Bowyer, 2004), and Vegetation Water
Content (VWC) (kg m−2), a key metric in retrieving soil moisture
content under vegetation canopies from active and passive microwave
remote sensing (Yilmaz et al., 2008).

EWT, defined as the amount of liquid water in a given leaf area
(Danson et al., 1992), is estimated from optical remote sensing data
using vegetation indices or inversion of radiative transfer models (e.g.
Serrano et al. (2000); Zhao et al. (2016); Pasqualotto et al. (2018)).
However, EWT can only be estimated during the day, as the sensors are
dependent on the solar illumination, while determining the vegetation
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water status predawn is preferable as there is no transpiration (Améglio
et al., 1999). In addition, the EWT estimation from optical remote
sensing data is affected by the canopy structure, understory vegetation,
background soil, atmosphere, and shadows, as these factors affect the
canopy reflectance and the signal received by the sensor (Ali et al.,
2016; Baret and Guyot, 1991; Zarco-Tejada et al., 2003). Furthermore,
the vertical heterogeneity in the canopy biophysical and biochemical
traits affects the light penetration and scattering within canopy, and
thus plays a role in the canopy reflectance; a role that still needs to be
further investigated (Ciganda et al., 2008; Liu et al., 2015; Valentinuz
and Tollenaar, 2004; Wang and Li, 2013). Thus, in recent years, there
have been attempts to utilize Terrestrial Laser Scanning (TLS) data to
provide 3D estimates of vegetation EWT to address the aforementioned
limitations, in addition to being an active sensor that can provide EWT
estimates both midday and predawn.

TLS instruments typically record 3D coordinates and intensity data
for each point in the scan, in a high definition point-cloud. The point
cloud geometry can be used to obtain numerous forest biophysical at-
tributes (Zheng et al., 2016), while the intensity data can be linked to
the canopy reflectance after calibration (Penasa et al., 2014). Calibra-
tion is needed for numerous factors that affect the TLS intensity data,
including the instrumental effects, the effects of the target distance, and
the effects of the incidence angle of the laser beam. Such effects have
been highlighted in numerous studies, and methods to calibrate the
intensity to apparent reflectance have been successfully developed for
various TLS instruments (Anttila et al., 2016; Blaskow and Schneider,
2014; Elsherif et al., 2018; Höfle and Pfeifer, 2007; Jutzi and Gross,
2009; Kaasalainen et al., 2011; Krooks et al., 2013; Tan and Cheng,
2016; Zhu et al., 2017). The calibrated TLS intensity data can then be
used to estimate EWT in 3D, using a single shortwave infrared laser
wavelength (Zhu et al., 2015; Zhu et al., 2017) or a Normalized Dif-
ference Index (NDI) of two laser wavelengths (Elsherif et al., 2018;
Gaulton et al., 2013; Junttila et al., 2018, 2016). Using NDI is prefer-
able, as it does not require correction for the incidence angle effects
(Elsherif et al., 2018; Hancock et al., 2017), or for the leaf internal
structure effects (Ceccato et al., 2001), if the two wavelengths involved
in NDI are similarly affected. The leaf internal structure significantly
affects the interaction of radiation with foliage (Jacquemoud and Baret,
1990), and calibrating for such effects using a single wavelength is not
trivial.

A few recent successful attempts to estimate EWT using TLS data
can be found in the literature. Gaulton et al. (2013) found a strong
relationship (R2= 0.80) between EWT of leaf samples from different
species and the NDI of near infrared (1064 nm) and shortwave infrared
(1545 nm) wavelengths. Zhu et al. (2015) reported a significant cor-
relation (R2=0.76) between EWT of leaf samples from eight species
and the intensity data from a RIEGL VZ-400 scanner (1550 nm short-
wave infrared). Zhu et al. (2017) used data from the same instrument to
retrieve the EWT vertical profiles for 20 plants from four different
species, observing some vertical heterogeneity in the canopy EWT.
Junttila et al. (2016) reported a strong relationship (R2=0.93) be-
tween EWT of leaf and needle samples from five different species and
the NDI of red (690 nm) and shortwave infrared (1550 nm) wave-
lengths. The relationship between EWT of Norway spruce seedlings and
the NDI of 905 nm and 1550 nm wavelengths was investigated by
Junttila et al. (2018), with a strong relationship (R2=0.91) being re-
ported. Elsherif et al. (2018) showed that the NDI of 808 nm and
1550 nm wavelengths, employed in the Leica P20 and the Leica P40
TLS instruments respectively, was highly correlated to EWT at leaf level
(R2 of 0.91 and 0.74) and at canopy level (R2 of 0.89 and 0.74) for
deciduous (Acer davdii) and conifer (Pinus nigra) species respectively,
also reporting some heterogeneity in the EWT vertical profiles. How-
ever, all the aforementioned studies investigated the relationship be-
tween TLS data and EWT at leaf level only, or at leaf and canopy level
for small individual trees in a controlled environment. To our knowl-
edge, no successful attempts to utilize TLS data to map the EWT in 3D in

real forest environments have been reported in the literature to date.
In this study, the NDI of the 808 nm near infrared and 1550 nm

shortwave infrared wavelengths, employed in the Leica P20 and P40
TLS instruments respectively, was used to produce 3D estimations of
EWT in a forest plot in Wytham Woods, Oxford, UK. The aims of the
study were to: (i) investigate the effects of leaf internal structure on NDI
of the aforementioned wavelengths, (ii) test the ability of NDI to gen-
erate 3D EWT estimates in a mixed-species forest plot, and (iii) examine
the vertical variation of EWT within forest canopies.

2. Materials and methods

2.1. TLS instruments

The technical specifications of the Leica P40 and P20 TLS instru-
ments are given in Table 1. Methods to calibrate the intensity data to
apparent reflectance for the two instruments are described in Elsherif
et al. (2018). A different P40 instrument was used in this study, and
access to the P40 and P20 raw intensity data, before the instruments
internally apply intensity stretching to enhance the visual appearance
of the point clouds, was granted by the manufacturer, Leica Geosys-
tems. Thus, the intensity calibration models were updated. Details are
given in Appendix A.

2.2. Leaf internal structure effects on NDI

The leaf internal structure not only affects how light interacts with
foliage, it also varies between different species and within each in-
dividual species (Lichtenthaler et al., 1981). Thus, the ability of NDI of
the 808 nm and 1550 nm wavelengths to minimize such effects is a key
parameter in estimating EWT at canopy level in forest environments.
PROSPECT simulations were conducted to investigate such ability.

PROSPECT (Jacquemoud and Baret, 1990) is a radiative transfer
model capable of simulating the optical properties of plant leaves over
the visible, near infrared and shortwave infrared regions of the elec-
tromagnetic spectrum. The version used in this study was PROSPECT-5
(Feret et al., 2008), which models the leaf optical properties using six
parameters: leaf structure coefficient (N), chlorophyll a and b content
(Cab), carotenoid content (Car), brown pigment content (Cb), leaf water
content (Cw) and dry matter content (Cm). The values of Cab, Car and Cb

were kept constant at model defaults in all simulations, 47.7 μg cm−2,
4.4 μg cm-2 and 0 respectively, as they have minor effects on the near
and shortwave infrared wavelengths (Gaulton et al., 2013). N is the leaf
mesophyll structure coefficient and is related to the cellular arrange-
ment within the leaf (Jacquemoud and Baret, 1990). Cm represents the
leaf dry matter content and is quantified in the model as the Leaf Mass
per Area (LMA) (Feret et al., 2008), which is the leaf dry weight divided
by the leaf surface area (Poorter et al., 2009). Cm will be referred to as
LMA and Cw will be referred to as EWT in the remainder of this study.
The simulations investigated the effects of N and LMA on NDI and on
the NDI – EWT relationship.

Table 1
Leica P40 and P20 technical specifications.

Leica P40 Leica P20

Measurement type Time-of-flight Time-of-flight
Wavelength 1550 nm 808 nm
Beam divergence 0.23 mrad 0.20 mrad
Beam diameter at exit 3.5 mm 2.8mm
Beam diameter at 10m 5.8mm 4.8mm
Beam diameter at 20 m 8.1mm 6.8mm
Maximum range up to 180m at 18%

reflectivity
up to 120m at 18%
reflectivity

Scan rate up to 1,000,000 points/
second

up to 1,000,000 points/
second
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2.2.1. The effects of N and LMA on the NDI
EWT was constant at an average value of 0.01 g cm−2 in all simu-

lations. LMA was constant at 0.01 g cm−2 while N was incrementally
changed as shown in Table 2. Next, N was constant at 2 (dimensionless)
and LMA was changed following Table 2. NDI was calculated for each
simulation.

2.2.2. The effects of N and LMA on the NDI – EWT relationship
A total number of 111 EWT values, ranging between 0.0046 and

0.0162 g cm−2, which resulted from actual leaf sample EWT measure-
ments conducted in this study (Section 2.4.1) and in Elsherif et al.
(2018), were used. For each EWT value, the simulations described in
Section 2.2.1 were conducted. The total number of simulations con-
ducted was 1221 to study the effects of N, and 1665 to study the effects
of LMA. The NDI was calculated for each simulation.

2.3. Study area and TLS scanning setup

The data collection campaign took place in Wytham Woods near
Wytham village (51.78 °N, 1.31 °W) in Oxfordshire, UK, between 22nd

and 31st of May 2017. Wytham Woods, owned by the University of
Oxford, is one of the most important sites for ecological research in the
world (Morecroft et al., 2001). The fieldwork data were acquired in a
35×45m rectangular plot around the treetop canopy walkway in the
18 ha Wytham core plot (Figs. 1 and 2). Wytham core plot is a per-
manent sample plot, established in the woodland for research purposes
(McMahon et al., 2015). The site was dominated by Quercus robur (oak)
and Acer pseudoplatanus (sycamore) trees, in addition to a number of
Fagus sylvatica (beech) and Fraxinus excelsior (ash) trees. The fieldwork
campaign took place in non-windy, non-rainy conditions at an average
temperature of 21 °Celsius. Thirteen trees around the canopy walkway
were selected for sampling, based on how accessible their leaves were
from the canopy walkway (Fig. 2). Ten scanning positions were set
around the walkway in locations corresponding to low density canopy
cover to obtain as much detail (laser beam returns) as possible from the
thirteen sampled trees (Fig. 2). At each scan position, full-hemisphere
scans (360° × 270°) were conducted by the P40 and the P20 instru-
ments, mounted consecutively on the same tripod, with a resolution
(point spacing) of 3mm at 10m. Four Leica black and white registra-
tion targets were used to link each pair of consecutive scanning posi-
tions. The scans were conducted over a period of two days. On the first

day, TLS data was collected from scanning positions S1 to S6, with the
duration of each scan being approximately fifteen minutes for each
instrument. This was followed by leaf sampling, for the purpose of
validating the EWT estimation (Section 2.4.2), from trees number 1, 2,
3, 4, 5, 6, and 8. No samples for validation were collected from the ash
tree, labelled 7, as it was the only ash tree accessible from the treetop
canopy walkway, and samples for building the EWT estimation model
were collected from it (Section 2.4.1). On the second day, scans were
carried out from scanning positions S7 to S10, followed by collecting
leaf samples for validation from trees number 9, 10, 11, 12, and 13.
Afterwards, leaf samples for building the EWT estimation models were
collected and processed as described in Section 2.4.1.

Table 2
Values of N and LMA used in PROSPECT simulations.

Minimum Interval Maximum Reference

N 1.5 0.1 2.5 (Jacquemoud and Baret, 1990)
LMA (g cm−2) 0.0017 0.001 0.0157 LOPEX dataset (Feret et al., 2008)

Fig. 1. The study area: (a) Wytham woods and the location of Wytham core plot and (b) the treetop canopy walkway.

Fig. 2. The 35×45m rectangular plot and the thirteen sampled trees (in-
dicated by numbers assigned during fieldwork). Black indicates trees that were
not sampled.
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2.4. Leaf sampling and biochemistry measurements

2.4.1. Samples for building the EWT estimation model
Eighty-four leaf samples were collected randomly from various trees

in the plot. The priority in sampling leaves for the EWT estimation
model was to ensure a representative and broad sample of species, leaf
types and EWT. Samples were collected from low branches in the ca-
nopy bottom that were accessible from ground using a tree pruner, and
also from the canopy top, which was accessible using the treetop ca-
nopy walkway. The canopy top leaf samples predominantly represented
sun leaves, while the canopy bottom leaf samples predominantly re-
presented shade leaves. Sun leaves grow in the well-lit regions of the
canopy and are usually thicker and have higher photosynthetic rates
than shade leaves (Lichtenthaler et al., 1981; Terashima et al., 2005).
The leaf samples included: 18 oak leaf samples, 22 beech leaf samples,
20 sycamore leaf samples, and 24 ash leaf samples. The ash leaf samples
were individual leaflets of the compound leaves. Leaf sampling was
carried out for each species separately. That is, the oak leaf samples
were collected first, and the fresh weight (FW) of each sample was
measured in field, immediately on collection, using an electronic bal-
ance (one milligram precision). The samples were then suspended in a
wooden frame, positioned 8.6m away from a tripod, and was scanned
in field using the P40, followed by the P20 instrument, with a resolution
of 0.8mm at 10m. The vertical and horizontal incidence angle effects
were minimized by ensuring the wooden frame was as normal as pos-
sible to the laser beam direction. The time gap between collecting the
samples and scanning them was less than fifteen minutes, and the
duration of the scan was approximately five minutes for each instru-
ment. Afterwards, the same sampling approach was repeated for each
species, one after another.

The leaf samples were then transferred to the laboratory and the
surface area (SA) of each leaf was obtained using Image-J 1.50i soft-
ware (Schneider et al., 2012), after scanning them with a Epson Per-
fection photo scanner. The samples were left to dry naturally over a
period of two weeks. Afterwards, they were further dried in an oven for
48 h at 60 °Celsius and were considered fully dry as no change in weight
was observed when they were weighed after 40, 44, and 48 h. The dry
weight (DW) of each leaf was measured and EWT was calculated as
follows:

EWT (g cm−2) = (FW – DW) / SA (1)

Additionally, LMA of each leaf sample was calculated as follows:

LMA (g cm−2) = DW / SA (2)

The intensity values of each leaf sample were extracted from the
scans and calibrated to apparent reflectance. NDI of reflectance was
calculated for each leaf as follows:

NDI = (P20R – P40R) / (P20R + P40R), (3)

where P20R and P40R are the reflectance from the P20 and P40 in-
struments respectively.

Reduced major axis regression was used to determine the NDI –
EWT relationship for each individual species, and also for all species
combined.

2.4.2. Samples for validation of the EWT estimation
A total of 274 leaf samples were collected from twelve out of the

thirteen trees shown in Fig. 2, as the ash tree, labelled 7, was excluded
from validation as discussed in Section 2.3. Table 3 shows the number
of leaf samples collected from each tree. The leaf samples were col-
lected from two canopy layers: the canopy top layer and the canopy
bottom layer. This allowed the areas sampled for validation to be ex-
plicitly identified in the TLS point cloud. The canopy top layer was 1m
above the canopy walkway level (12m), with a depth of one meter,
while the canopy bottom layer consisted of the low branches that were

accessible from the ground. EWT and LMA of each leaf sample were
measured following the steps described in Section 2.4.1.

2.5. TLS point cloud processing

2.5.1. Point cloud registration and filtering
The scans collected at each scanning position were imported into

Leica Cyclone (Leica Geosystems HDS). The mixed pixel filter on
medium setting (default setting) was used to reduce the number of
partial canopy hits. Partial hits occur when a leaf does not fully occupy
the laser beam footprint, and can affect the accuracy of the TLS esti-
mation of leaf biochemical characteristics (Eitel et al., 2010). The
mixed pixel filter searched for points that have a measured range that
was actually a mixture of various observed ranges. The filter then dis-
regarded these points, as they occurred when the edge of the object
partially occupied the laser footprint. The point clouds from each in-
strument were registered in Leica Cyclone, using the registration tar-
gets, to build the forest plot. The registered P20 scans were then aligned
to the registered P40 scans. The outcome was a pair of P40/P20 aligned
point clouds at each scanning positions. Points corresponding to ground
and understory vegetation were removed to reduce the size of the point
clouds.

A P20 point cloud was always found to have more points than the
corresponding P40 point cloud, being a result of more remaining partial
hits in the P20 point cloud and/or the slight difference in laser beam
footprint and beam divergence between the two instruments (Table 1).
Thus, for each pair of the P40/P20 aligned point clouds, an index
matrix that defined the nearest neighbour in the P20 point cloud to
each point in the P40 point cloud was generated by applying a nearest
neighbour function in MATLAB. The index matrix was used to filter the
P20 point cloud, generating a nearest neighbour point cloud containing
the same number of points as the corresponding P40 point cloud. Fur-
thermore, any pair of P40/P20 neighbour points> 3 cm apart was re-
moved from the point cloud. The 3 cm threshold was chosen on the
basis of 96% of the nearest neighbour distances being< 3 cm apart,
while 99% of distances were< 6 cm apart.

2.5.2. Generating the EWT point clouds
The filtered point clouds were calibrated to apparent reflectance

and NDI was calculated using Eq. 3 for each pair of P40/P20 scans on a
point-by-point basis. The NDI point clouds from the ten scanning po-
sitions were merged into a single point cloud that covered the entire
35× 45m rectangular plot. The sampled trees (Table 3) were manually
extracted from the NDI point cloud. They were divided into three
groups according to their species and both the species-specific and
pooled NDI – EWT models (Section 3.2.1) were applied to generate the

Table 3
Details of the species, locations and numbers of the leaf samples for the EWT
estimation validation. The samples from the ash tree, labelled 7, were excluded.

Tree label Species Number of leaf samples

Canopy top layer Canopy bottom layer

1 Sycamore 20 18
2 Sycamore 18 10
3 Sycamore 20 20
4 Sycamore – 20
5 Beech 19 –
6 Sycamore 20 –
8 Oak – 24
9 Oak 20 –
10 Oak 20 –
11 Oak 15 –
12 Sycamore 15 –
13 Oak 15 –
Total number 182 92
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EWT point clouds.

2.5.3. Validating the EWT estimations
Visual inspection of the NDI point cloud and histogram of each tree

showed that foliage NDI was clustered around 0.3, while for wood it
was clustered around zero. Wood typically is expected to have higher
shortwave infrared reflectance than green foliage, as it contains less
moisture, while their near infrared reflectance is expected to be similar
at the wavelength used in this study (808 nm). This caused the lower
NDI values of wood components. Applying the NDI – EWT estimation
models (Eqs. 5 to 9), trained solely using green foliage, would then
result in the majority of points corresponding to woody materials to
have EWT value equal to or below zero, even if they had higher
moisture in reality. The same applies to noise points, resulted from
wrongly assigned nearest neighbours, that is, a full hit being assigned to
a partial hit, resulting in a very low or a very high NDI value. As the
focus of this study was to estimate EWT of foliage only, a threshold of
zero was used to disregard the points corresponding to wood and noise.
Afterwards, using visual inspection, points that clearly corresponded to
wood, being part of the trunk or primary branches, but were wrongly
classified as leaves, were manually removed. In addition, it was possible
to visually identify and remove many of the points corresponding to
lateral branches. However, it was not possible to identify and remove
smaller branches and twigs. Additionally, a Gaussian distribution was
fitted to the EWT histogram and a threshold equal to twice the mean
value was applied to filter points with very high EWT (Fig. 3).

The layers from which the leaf samples were collected were ex-
tracted from each individual tree point cloud. The estimated EWT of
each layer was compared to the actual EWT of the leaf samples col-
lected from that layer and the relative error was calculated as follows:

E% = ((Estimated EWT – Actual EWT) / Actual EWT) × 100 (4)

The EWT point cloud of each tree was divided into a number of
horizontal layers, each 1m deep. EWT of each layer was plotted against
the corresponding height to produce the EWT vertical profile of the
tree. The EWT vertical profiles were produced from the EWT point
clouds generated using the pooled EWT estimation model (Eq. 9).

3. Results and discussion

3.1. Leaf internal structure effects on NDI

3.1.1. The effects of N and LMA on the NDI
Changing N significantly affected the leaf reflectance in the visible,

near infrared and shortwave infrared regions of the electromagnetic
spectrum, with higher values of N leading to an increasing reflectance
(Fig. 4a). On the other hand, LMA affected the leaf reflectance in the
near and shortwave infrared regions only, with higher values of LMA

resulting in a lower leaf reflectance (Fig. 5a). The 808 nm and 1550 nm
wavelengths showed similar sensitivity to the change in N and LMA,
and combining them in the NDI minimized but did not entirely nor-
malize these effects (Fig. 4b and Fig. 5b). A leaf with a more compact
mesophyll structure would have a slightly higher NDI than a leaf with a
more differentiated structure, even if they both had an identical EWT.
On the other hand, a leaf with respectively lower LMA would have a
slightly lower NDI than a leaf with higher LMA that has the same EWT
value and area.

3.1.2. The effects of N and LMA on the NDI – EWT relationship
An increase in N resulted in a shift in the trendline of the NDI – EWT

relationship downwards (Fig. 6a), with the effects of N appearing to be
more significant for higher EWT values. On the other hand, an increase
in LMA caused the trendline of the NDI – EWT relationship to be shifted
up (Fig. 6b), with the effects being slightly more significant for lower
EWT values. It is worth mentioning that although N and LMA were
considered uncorrelated parameters in the simulations, for the sake of
studying their effects on NDI individually, they are highly correlated in
reality. N is correlated to the Specific Leaf Area (SLA), defined as the
leaf surface area divided by the leaf dry mass, and an increase in SLA
leads to a decrease in N (Jacquemoud and Baret, 1990). Thus, N is also
highly correlated to LMA, as LMA is the reciprocal of SLA. A thinner leaf
would frequently have a lower N value than a thicker leaf, and corre-
spondingly a lower LMA value. Although the PROSPECT simulations
revealed that both N and LMA individually affect NDI, when their ef-
fects are combined they would be minimized as they would cancel each
other out (Figs. 4b and 5b). Thus, a change in NDI would be mainly
caused by a change in EWT, with some remaining minor influence of N
and LMA.

3.2. Leaf sampling and biochemistry measurements

3.2.1. Samples for building the EWT estimation model
For each individual species, moderate correlation was observed

between NDI and EWT (R2=0.55, 0.57, 0.59 and 0.68 for the beech,
ash, oak and sycamore species respectively). Some differences in the
slope and intercept of the NDI – EWT relationship were observed be-
tween the different species (Fig. 7). This can be a result of the remaining
effects of the leaf internal structure on the NDI, as PROSPECT simula-
tions revealed that NDI can minimize but not entirely normalize such
effects (Section 3.1). The species-specific NDI – EWT relationships can
be described as:

EWT (g cm−2)= 0.0488×NDI – 0.0016, for the sycamore species
(5)

EWT (g cm−2)= 0.0553×NDI – 0.0031, for the oak species (6)

EWT (g cm−2)= 0.0327×NDI – 0.0002, for the beech species (7)

EWT (g cm−2)= 0.0534×NDI – 0.0032, for the ash species (8)

The species-specific relationships for beech and oak were based on a
narrow EWT range. A linear model was therefore fitted to all the leaf
samples combined (R2=0.94) (Fig. 7) to provide an improved cali-
bration equation. However, it is acknowledged that there remains a gap
in the EWT values, between 0.0055 g/cm2 and 0.008 g/cm2, thus the
high correlation can potentially be misleading. More leaf samples are
needed in future work in order to fill this gap in the model, but the
consistency of trends between the general and individual species
models give confidence it is suitable for application at canopy scale. The
model can be described as:

EWT (g cm−2)= 0.0579×NDI – 0.0039 (9)

3.2.2. Samples for validation of the EWT estimation
The average EWT of all leaf samples collected from the canopy top

Fig. 3. Example of using the mean (μ) of the fitted EWT histogram Gaussian
distribution to remove the noise by applying a threshold equal to 2μ (purple)
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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layer was 20% higher than that of the leaf samples collected from the
canopy bottom layer (Fig. 8). This revealed a vertical heterogeneity in
EWT within canopies and agreed to the findings of Zhu et al. (2017) and
Elsherif et al. (2018), although these studies dealt only with individual
small trees in indoor experiments. In addition, LMA of leaf samples
from the canopy top layer was 42% higher than that of the canopy
bottom layer, suggesting that the observed higher EWT in the canopy
top was caused by the leaves having higher LMA, increasing their
ability to hold moisture. To further investigate, the relationship be-
tween EWT and LMA for all leaf samples was studied (Fig. 9), revealing
that EWT and LMA were highly correlated (R2= 0.92, 0.61, 0.60 and
0.63 for beech, ash, oak and sycamore respectively), and that the re-
lationship between EWT and LMA was species-specific. Additionally,
studying the EWT – LMA relationship within each species revealed
some differences between the individual trees (Fig. 10).

The lowest EWT observed was 0.0046 g/cm2, while the highest was
0.0145 g/cm2. According to PROSPECT simulations results (Section
3.1), this change in EWT would cause a 79% increase in NDI, assuming
constant values of N and LMA. On the other hand, the lowest LMA
observed was 0.0014 g/cm2 and the highest was 0.0063 g/cm2. Such a
change in LMA, assuming constant EWT and N, would cause only a 7%

Fig. 4. (a) Effects of N on the leaf reflectance, and (b) effects of N on 808 nm wavelength, 1550 nm wavelength, and NDI.

Fig. 5. (a) Effects of LMA on the leaf reflectance and (b) effects of LMA on 808 nm wavelength, 1550 nm wavelength and NDI.

Fig. 6. (a) Effects of N on the NDI – EWT relationship and (b) effects of LMA on the NDI – EWT relationship.

Fig. 7. NDI – EWT relationships for individual species and for all the samples
combined.
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increase in NDI. For N, assuming that the leaves covered the whole
range between 1.5 and 2.5, changing N, while EWT and LMA remained
constant, would result in a 17% reduction in NDI. This further showed
that NDI was mainly affected by the change in EWT.

3.3. EWT point clouds

The Root Mean Square Error (RMSE) of the point cloud registration,
reported by Leica Cyclone, was 3mm for each instrument separately. As
the scans were conducted at a resolution of 3mm at 10m, the regis-
tration accuracy was considered sufficient. The RMSE of the registra-
tion of the P20 point clouds to the P40 point clouds was 1mm. The high
accuracy was a result of the similarities between the two instruments in
terms of their scanning mechanism and laser beam exit location, and

also a result of the similar scanning geometry. Another key factor was
the absence of wind. Scanning in more windy conditions would be
expected to significantly reduce the registration accuracy. The high
registration accuracy allowed the generation of 3D EWT point clouds,
as shown in Figs. 11 and 12.

The point clouds revealed a significant difference between the leaf
and wood EWT, showing some potential of using the 3D EWT dis-
tribution in separating the leaf from the wood using zero EWT as a
separation threshold. However, testing this method revealed that many
points that clearly corresponded to wood (e.g. trunk, primary branches,
lateral branches) had above zero EWT, and thus were mistakenly
classified as leaves. Attempting to filter these points using a higher
threshold resulted in removing points clearly corresponding to leaves.
Thus, these points had to be removed manually, which renders this
method impractical at plot scale. In addition, it was not possible to
visually identify and manually remove misclassified points that corre-
sponded to small branches and twigs. Additionally, numerous points
corresponding to leaves were also classified as wood, as they had below
zero EWT. This could be a result of wrongly assigned nearest neigh-
bours, as discussed in Section 2.5.3. It was possible to filter these points
using the statistical outlier removal tool in the CloudCompare v. 2.6.2
software, as they were sparse points in comparison to the very dense
points in the trunk and branches. However, this method may also filter
small branches and twigs, and as no field measurements were con-
ducted to validate this leaf-wood separation approach, it was not pos-
sible to determine its accuracy.

3.4. Validating the EWT estimations

Comparing the estimated EWT to the actual EWT from the leaf
samples revealed a relative error of 7.7% on average in the EWT esti-
mations for the species-specific models and 6.3% for the pooled model.
Table 4 summarizes all the observed errors. The largest observed error

Fig. 8. A boxplot of the EWT of the leaf samples in canopy top and canopy bottom layers: (a) all leaf samples combined, (b) sycamore, and (c) oak. The whiskers are
the minimum and maximum values.

Fig. 9. The EWT – LMA relationships of the leaf samples from the four species.

Fig. 10. The EWT – LMA relationships of the individual trees: (a) sycamore and (b) oak.
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for the species-specific models was -21% for the beech tree. This high
error can be a result of the narrow range of EWT in the leaf samples
used to build the EWT estimation model, which was insufficient to
accurately determine the slope and intercept of the NDI – EWT re-
lationship. All the remaining errors were<10%, except for the errors
obtained in the canopy top layer in sycamore trees number 2 and 12,
and in the canopy bottom layer in oak tree number 8. When the pooled
model was used, the error in the EWT estimation for the beech tree
dropped to -2.8%, further showing that the species-specific model of
beech was inaccurate. The errors in sycamore trees number 2 and 12
increased, with the errors being higher than those observed in the re-
maining sycamore trees. As EWT was underestimated, this suggested
lower NDI values, which can be a result of the remaining effects of the
leaf internal structure on the NDI, if leaf samples from these two trees
were thicker than the leaves used to build the EWT estimation model,
according to PROSPECT simulations. On the other hand, the error in the

EWT estimation in oak tree 8 dropped when the pooled model was
used, but remained higher than the errors observed in the remaining
oak trees. The overestimation of EWT suggested that leaf samples col-
lected from that specific tree were thinner than the leaf samples used to
build the EWT estimation model.

The observed EWT estimation errors showed the possibility of using
a pooled NDI – EWT model to successfully estimate EWT in a mixed
forest plot without needing a NDI – EWT estimation model for each
individual species. Using a pooled EWT model can then be more ap-
plicable as it does not require prior tree species classification. However,
further experiments that include measuring leaf thickness are still
needed to better understand the source of the high errors observed in
some trees.

Fig. 11. The 3D EWT distribution of the sampled trees.

Fig. 12. Examples of the 3D EWT distribution of individual trees: (a) Sycamore tree, labelled (6), and (b) Oak tree, labelled (11).
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3.5. EWT vertical profiles

The EWT vertical profiles (Fig. 13) revealed a vertical variation in
the EWT distribution in all twelve trees, agreeing to the leaf sampling
results (Section 3.2.2). Fig. 13 also shows the advantage of using TLS
data in mapping the EWT in forest plots over the destructive sampling
approach. TLS can estimate EWT in all canopy layers, which requires
tree climbers and extensive destructive sampling to be achieved using
traditional approaches. Assuming that the leaves in the top part of the
canopy were sun leaves, and those in the bottom were shade leaves, the
vertical profiles of EWT showed a gradual transition between sun leaves
and shades leaves, with sun leaves having higher EWT, and corre-
spondingly higher LMA, than shade leaves.

All trees had higher EWT in the upper canopy than in the shaded
lower canopy. This concurred with the findings of Zhu et al. (2017);
Elsherif et al. (2018) and Gara et al. (2018), all reporting higher EWT in
the canopy top than the canopy bottom in variety of species. The upper
canopy in all trees had an average of 24.2% more EWT than the lower
canopy. However, the errors presented in Table 4 showed that the EWT
estimation models overestimated the EWT in the canopy bottom layer
and, in most cases, underestimated the EWT in the canopy top layer,
suggesting that the actual difference between EWT of upper and lower
canopy can be higher than 24.2%. The highest observed variation in
EWT was in the beech tree, labelled (5), where EWT in the upper ca-
nopy was 44% higher than the bottom canopy. The lowest variation
was observed in the oak tree, labelled (10), where EWT was 13.6%
higher in the upper canopy than in the lower. Similarities were ob-
served in the vertical profiles of the sycamore trees, with the upper
canopy layer having an average of 20% higher EWT than the lower
canopy. The vertical profile of the beech tree was more distinctive. The
vertical profiles of the oak trees showed some variations from each
other, with EWT being 25.4% higher in upper canopy than in lower
canopy, which suggested that the EWT vertical profile can vary within a
species, depending on each individual tree structure.

As discussed in Section 3.2.2, EWT and LMA were found to be
highly correlated. Thus, EWT vertical profiles shown in Fig. 13 also
reflected the vertical variation in LMA within canopies. Furthermore,
the EWT – LMA relationships can be used to derive LMA vertical pro-
files and 3D distributions, based on the generated 3D EWT point clouds.
When the pooled EWT – LMA relationships, shown in Fig. 9, were tested
to produce LMA vertical profiles, large errors were observed in some
trees, as large as 40%, especially in the canopy bottom layers, although
the samples used for validation were the same samples used to build the

EWT – LMA models. When tree-specific models were used (Fig. 10), the
errors dropped. The average error in the LMA estimation was 7.1%,
whilst the errors in each tree were less than 10%, except for trees 1 and
3 canopy bottom layers (18% and 13.4% respectively). Although this
showed the potential of using EWT to generate 3D estimates of LMA,
the method seemed to be applicable at individual tree level only and
applying it at plot level can be challenging.

4. Conclusions

The main focus of this study was to investigate the possibility of
using dual-wavelength TLS to generate 3D EWT estimations at canopy
level in a mixed forest plot. The NDI of a near infrared wavelength
(808 nm) and a shortwave infrared wavelength (1550 nm), employed in
the Leica P20 and P40 commercial TLS instruments respectively, was
used to map EWT in 3D at canopy level in a mixed deciduous forest plot
in Wytham Woods, Oxford, UK. PROSPECT simulations were carried
out to study the ability of the NDI to normalize the leaf internal
structure effects and revealed that NDI can minimize such effects. Such
ability allowed the using of NDI to estimate EWT at canopy level
without the need for calibration for the variation in the leaf internal
structure within each individual species or between different species.

At leaf level, moderate correlation was observed between NDI and
EWT across four broadleaf tree species: oak, sycamore, beech and ash. It
was also possible to fit a pooled EWT estimation model that combined
all species, but more leaf samples still need to be added to the model to
fill the gap in the low EWT region of the model. At canopy level, it was
possible to achieve a high registration accuracy for the point clouds,
despite the difference in the laser beam footprint and beam divergence
between the two instruments. This was a result of the similarity in the
chassis of the instruments and their laser beam exit locations, in addi-
tion to the similarity in the scan geometry. NDI was successfully used to
generate 3D estimations of EWT in the scanned forest plot, using spe-
cies-specific models in addition to a pooled EWT model, with a relative
error of 7.7% and 6.3% in the EWT estimation respectively. The gen-
erated 3D distributions of EWT revealed some vertical heterogeneity in
all the sampled trees. All the trees were found to have higher EWT in
the canopy top than the canopy bottom, with EWT gradually becoming
lower as we move down the canopy. Such variation in EWT can be a
result of the leaves in the top of the canopy, predominantly sun leaves,
having higher LMA than shaded leaves in the bottom of the canopy, as
EWT and LMA were found to be highly correlated. The observed EWT
vertical variation in the forest plot may affect the estimation of EWT
using passive optical space or airborne sensors, because measurements
from such instruments will be dominated by the canopy top, which,
according to this study, has higher EWT than the lower layers in the
canopy. However, the vertical profile of EWT still needs to be in-
vestigated across additional species and in different sites.

This study showed the potential of using commercially-available
TLS instruments to provide important insights into the EWT distribution
within forest canopies, by mapping the EWT at canopy level in 3D. The
proposed approach can serve as a powerful tool to study the variation of
EWT within the canopy and between different species, can provide high
spatial and temporal EWT estimations, independent of the cloud cov-
erage and solar illumination, and can estimate EWT predawn and
midday. Additionally, if coupled with optical spaceborne or airborne
remote sensing data, the 3D EWT estimates can result in a better un-
derstanding of the effects of the woody materials, soil, and understory
vegetation on the optical remote sensing estimation of EWT. The 3D
EWT estimates can also be implemented in 3D radiative transfer models
to investigate the effects of the EWT vertical variation on the optical
sensor measured reflectance. In addition, the technique could allow
characterisation of whole-tree leaf water status and total water content,
if total leaf area can be derived. TLS has shown potential for estimation
of LAI at stand and canopy scales (Antonarakis et al., 2010; Zheng et al.,
2013) and combining these methods could provide new insights into

Table 4
A summary of the EWT estimation errors in the twelve trees, for the canopy top
and bottom layers. The signs of the errors were ignored while calculating the
average and total errors.

Tree Species Relative error in EWT estimations

Species-specific models Pooled model

Canopy top Canopy bottom Canopy top Canopy bottom

1 Sycamore −5.9% 9.2% −5.3% 7.2%
2 Sycamore −13.5% 6% −13.5% 4.3%
3 Sycamore −2.5% 6.9% −2.7% 4.3%
4 Sycamore – 9.3% – 7.3%
5 Beech −21% – −2.8% –
6 Sycamore −0.7% – −1% –
8 Oak – 12.5% – 10.2%
9 Oak 8% – 6.7% –
10 Oak 3.7% – 2.1% –
11 Oak −0.6% – −2.4% –
12 Sycamore −12% – −13.3% –
13 Oak −3% – −5.4% –
Average error 7.1% 8.8% 5.5% 6.7%
Total error 7.7% 6.3%
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forest health and functioning.
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Appendix A

SphereOptics® spectralon panels (Table A1) were used to repeat the calibration work described in (Elsherif et al., 2018) and update the intensity
calibration models.

The polynomial functions that describe the range effects for the P40 instrument:

Fig. 13. The EWT vertical profiles. Tree (5) is beech, trees (1, 2, 3, 4, 6 and 12) are sycamore and trees (8, 9, 10, 11 and 13) are oak.
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IP= 0.0004 × Ra3 - 0.0061 × Ra2 + 0.0294 × Ra - 0.0089, for Ra<5m
(A.1)

IP = (- 1.2× 10−10) × Ra6 + (1.3× 10-8) × Ra5 – (4.98× 10-7) × Ra4 + (4.5×10-6) × Ra3 + (1.1×10-4) × Ra2 – 0.0022 × Ra + 0.0444, for
Ra>5m (A.2)

The polynomial functions that describe the range effects for the P20 instrument:

IP = - 0.0014 × Ra2 + 0.0123 × Ra + 0.0150, for Ra< 5m (A.3)

IP = (5.5× 10−10) × Ra6 – (7.5× 10-8) × Ra5 + (4.1× 10-6) × Ra4 – (1.1× 10-4) × Ra3 + 0.0017 × Ra2 – 0.0122 × Ra+ 0.0719, for Ra>5m
(A.4)

where IP is the intensity from the polynomial function at a range Ra.
The intensity – reflectance relationships for the P40 instrument:

P40R= 53.861 × P40I2 + 8.992 × P40I + 0.0003, for Ra< 5m
(A.5)

P40R= 45.553 × P40I2 + 9.307 × P40I + 0.0044, for Ra> 5m
(A.6)

where P40R is the reflectance corresponding to a P40I intensity value.
The intensity – reflectance relationships for the P20 instrument:

P20R= 45.942 × P20I2 + 8.490 × P20I + 0.002, for Ra< 5m (A.7)

P20R= 40.981 × P20I2 + 9.109 × P20I + 0.0052, for Ra> 5m
(A.8)

where P20R is the reflectance corresponding to a P20I intensity value.
The near-range intensity – reflectance models account for the effects of the near-distance intensity reducer in both instruments.
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