
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NGEO1895

NATURE GEOSCIENCE | www.nature.com/naturegeoscience	 11 
 

The legacy of the Pleistocene megafaunal extinctions on nutrient 1 

availability in Amazonia  2 

Table of contents 3 

Overview    pg 2 4 

Justification for the random walk pg 3 5 

Estimate of Dexcrement and Dbody  pg 5 6 

Consumption of nutrients  pg 6 7 

Estimates of coefficients for D  pg 9 8 

1D solution    pg 10 9 

2D solution    pg 12 10 

Continental scale analysis  pg 16 11 

Possibilities to test predictions  pg 17 12 

Tables     pg 19 13 

Figures     pg 21 14 

References    pg 24   15 

  16 

http://dx.doi.org/10.1038/ngeo1895


2 
 

 17 

Overview 18 

 In this paper, our goal is to estimate diffusive lateral nutrient fluxes by herbivores.  In diffusion, 19 

the flux is proportional to the local concentration difference in material, with a constant of proportionality 20 

termed the “diffusivity” D (length
2
/time).  The equation that best incorporates the diffusive properties of 21 

animals is the following reaction diffusion equation:  22 

  

  
  

   

                 [1] 23 

where K is a first order loss rate and G is a gain rate.  To calculate a diffusion term we estimate D based 24 

on the random walk with the form: 25 

   
     

   
   [2] 26 

Where ∆x is a change in distance and ∆t is a timestep of duration t.  In general, a diffusivity can be 27 

derived from a random walk 
1-3

.  The “random walk” has been derived previously 
4
.   28 

 29 

 30 

  31 
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Justification for the random walk 32 

Individual animals do not move randomly, but the net movement of all animals over long time 33 

periods (>1000 years) begins to approximate random motion.  There is a large literature describing how 34 

different animal species overlap in space by consuming different foods and moving and sleeping in 35 

different patterns to avoid a variety of predators
5-7

.  Internal demographics of animal groups will also 36 

change which will lead to shifting ranges and boundaries of the group over time 
8
.   37 

Next, large herbivores patterns will change in response to changing climate.  For instance, 38 

herbivores often track landscape patterns in grass productivity 
9
 which will change in response to variable 39 

rainfall patterns
10

, which have experienced large global shifts over the past 15,000 years.  Such 40 

interannual variation in climate alters the productivity of the landscape, which drives changes in animal 41 

foraging intensity 
11,12

.  These shifting patterns will serve to further move herbivore patterns from their 42 

current routes.  For instance, in Kenya, during wet years there is a net nutrient input into certain patches 43 

because the impala dominate, but in dry years there may be a net loss, because the cattle dominate
13

.  Due 44 

to these reasons, the net movement of all animals over long periods will approach an approximation of 45 

randomness.    46 

As long as there is an underlying substrate concentration gradient, over long periods of time if the 47 

net movement is approximately random, animals will move the nutrients across the gradient.  This seems 48 

to contradict literature showing that megafauna concentrate nutrients in small scale patches 
13

.  However, 49 

there is no contradiction, only a difference in the time, distance, and lack of a substrate concentration 50 

gradient.  The study on megafaunal nutrient concentration focused on small nutrient patches in central 51 

Kenya (~1ha nutrient rich vegetation per 1km
2
 nutrient poor vegetation) within homogenous nutrient poor 52 

metamorphic soil substrate.  To the north of that study sites are rich basaltic soils of N. Kenya and 53 

Ethiopia. As these small patches of nutrient concentration shift across the landscape on decadal and larger 54 

timescales, nutrients will flow from the nutrient rich basalt to the nutrient poor metamorphic substrate 55 
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from patch to patch, through the large herbivores, over hundreds of km’s and thousands of years.  We 56 

have used our model to show a similar process for Kruger Park between nutrient rich basalts and granites 57 

in a companion paper
14

. 58 

There is evidence that the small scale nutrient hotspots shown in the Augustine et al. 2003 paper 59 

will shift with time.  That paper depicts the creation of nutrient hotspots by the corralling of cattle where 60 

significant quantities of dung accumulate over time
13

.  They then measure a significant decline in the 61 

nutrients of these areas as they are abandoned over time.    It is unlikely that these nutrients are lost but 62 

instead redistributed, thus showing how nutrient hotspots can build up but then move over short time 63 

periods (~40 years).   64 

This process has also been experimentally demonstrated in a recent study where the authors 65 

measured the total seed biomass transported between the white water floodplains and the terra firme 66 

forests by a population of wooly monkeys.  They show that a single, relatively small species can transport 67 

phosphorus in quantities similar to that arriving from atmospheric deposition
15

.  There was no net 68 

movement of seed biomass between the two regions, but P was transported between the sites only due to 69 

the nutrient concentration gradient.  There are several other similar studies showing the net movement of 70 

nutrients by animals 
16,17

.  Our mathematical framework enables us to estimate this process over all 71 

animals and long periods of time.   72 

 73 

 74 

  75 
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 76 

Estimate of Dexcreta 77 

Nutrients can be moved by animals through either their dung or flesh.  Nutrients moved in dung 78 

will have different distance and time scales than those moved in the flesh.  We therefore calculate D for 79 

each separately.  Below we start with D for dung.  80 

x is the daily displacement or day range (DD) of a single animal (DD; km), and t is a day.  The 81 

length scale for diffusivity of ingestion and excretion is the day range multiplied by the average gut 82 

passage time (PT; fractions of a day).  The time scale is again the food passage time (PT).  Therefore, 83 

putting this in the framework of the random walk, we estimate that the diffusivity for transport of its dung 84 

is Dexreta ~= (DD*PT)
2
/(2*PT), where the numerator is in km

2
 and the denominator is in days.   85 

 86 

 87 

Estimate of Dbody 88 

Next, we calculate a D term for nutrients incorporated into the animal’s body.  The diffusivity for 89 

nutrients in an animal’s bodymass, Dbones, is related to the lifetime of the animal L (days) and the 90 

residence time of these nutrients is L.  The length scale is the home range (HR; km
2
).  The mean 91 

displacement over the lifetime of an animal is related to the range length (RL) and approximately 92 

HR
0.5

/2π.  Therefore, if HR is the range used throughout an animal’s lifetime, then Dbody ~= RL
2
/2L or 93 

HR/(8π
2
L), where the numerator is in km

2
 and the denominator is in days. 94 

 95 

 96 

 97 

  98 
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 99 

Consumption of nutrients 100 

Next, we need to estimate the amount of food and nutrients consumed by a population of animals 101 

per area.  P(x,t) is the mass (kg P km
-2

) of a nutrient. The mass of P at position x at time t+t is given by: 102 

       [3] 103 

The losses term is represented in Equation 3 by p(x,t), the fraction of animals leaving x at time t.  The 104 

loss of a nutrient in dry matter consumed and transported by a population of animals is 105 

 [4]

 106 

The loss rate of P (kg DM km
-2

) is the population density of animals (PD; #/km
2
) consuming dry matter 107 

(DM) to fulfil their metabolic requirements (MR; kg DM/animal/day).  The product of PD and MR is the 108 

population consumption rate of DM (denoted Q here), such that Qt is the mass of DM consumed in t 109 

(kg DM km
-2

). The consumption of the nutrient itself is then determined by Q[P](x,t), which has units kg 110 

P km
-2

, equivalent to P, the numerator on the left.  Gains from adjacent regions will be represented as 111 

Q[P](x+x, t) and Q[P](x-x, t).  A fraction  of the consumed nutrient is incorporated into bodymass, 112 

while the rest (1-) is excreted.    113 

We estimate  as 22.4% for megafauna based on the gross food assimilation efficiency of 114 

elephants 
18

.  Incorporation of phosphorus into the body is, of course, more complicated with relative P 115 

fraction of biomass increasing with size due to the greater investment in bone growth in larger vertebrates 116 

19
.  It also changes with animal age as full grown adult vertebrates need less P than immature growing 117 

animals.  However, since we account for both the fraction in the biomass and the fraction excreted and 118 

there are no fates of the nutrient other than bodymass or excrement, we use the simple value of 22.4%.  119 



P(x,t t)  P(x,t)  losses gains




animals

km2
kgDM t

animal

kgP

kgDM
(x,t)t   PD MR [P](x,t)t  Q[P](x,t)t
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 357 

 358 

SOM Figure 2 – (top) Lateral distribution of nutrients starting from initial conditions over a 1000km 359 

distance from a nutrient supply (e.g. the Amazon floodplain) and a 100,000 year period with a excreta 360 

value of 4.4 km2 yr-1(representing lateral diffusion by modern and extinct fauna), (bottom) a excreta value 361 

of 0.027 km2 yr-1 (representing lateral diffusion by modern fauna only). 362 

 363 
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 364 

SOM Figure 3 – A comparison of our modelled modern-day phosphorus estimates (kg P km
-2

) (same as 365 

Figure 3b) in the background and estimates of (a) percent vegetation/ labile P, (b) vegetation P (kg km
-2 366 

from Fyllas et al. 2009
35

, assuming a SLA of 100g m
-2

 and an LAI of 4), (c) total P (Mg km
-2

), and (d) 367 

labile P (Mg km
-2

)  measured in the Amazon basin from Quesada et al. 2010
38

. 368 

 369 
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