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Anthropogenic  climate  change  causes  more  frequent  and  intense

fluctuations in the El Niño Southern Oscillation (ENSO). Understanding

the effects  of ENSO on agricultural  systems is crucial  for predicting

and  ameliorating  impacts  on  lives  and  livelihoods,  particularly  in

perennial tree crops, which may show both instantaneous and delayed
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2
responses. Using cocoa production in Ghana as a model system, here we

show that in recent times, El Niño years experience reductions in cocoa

production  followed  by  several  years  of  increased  production,  a

significantly  different  pattern  than  prior  to  the  1980s.  ENSO phase

affects the climate in Ghana, and over the same time period, we see

concomitant significant shifts in the climatic conditions resulting from

ENSO extremes,  with  increasing  temperature  and  water  stress.  Our

results  illustrate  the  big  data  analyses  necessary  to  improve

understanding  of  perennial  crop  responses  to  climate  change  in

general, and climate extremes in particular. 

Changes  in  the  patterns  of  climate  and  climate  extremes  through

anthropogenic  climate  change  will  cause  substantial  changes  to  crop

production1,  and understanding the processes that shape these responses is

increasingly  important  to  maintain  food  supplies  and  the  livelihoods  that

depend on  farming,  distribution  and  industrial  processing  of  crops.  This  is

particularly true in the global south where a greater proportion of farmers live

at or below the poverty level and there may be less state, institutional  and

individual resilience to production volatility. Worse, the relatively stable intra-

annual  climate of  the tropics  is  most  at risk of  experiencing novel  climatic

conditions  as  a  result  of  climate  change2.  These  conditions  may  first  be

experienced as a result of climatic oscillations such as those driven by the El

Niño  Southern  Oscillation  (ENSO),  which  is  increasing  in  frequency  and

magnitude3,4. Understanding the links between ENSO and crop production may

contribute  to  the  monitoring  and  prediction  of  crop  production,  informing

management  of  agriculture  and  markets,  and  potentially  providing  early

warnings for disruption to livelihoods from widespread crop failures.

El Niño events bring hot weather to the terrestrial tropics, often accompanied

by reduced rainfall5; the resulting droughts reduce vegetative productivity and

have increased in severity under climate warming2. The impact of ENSO phase

on crop production has been demonstrated at spatial resolutions from small-

scale  farm  studies  (e.g.  in  rice6,  coffee7,  cocoa8)  disentangling  vegetative

responses to management, pests, disease and climate, to regional and national

production9,10 exploring the substantial geographic variation within responses
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3
at  regional  and  global  scales11.  Much  crop-ENSO research  has  focused  on

annuals, the source of the majority of the world’s food, and the short life cycle

of  these  crops  allows for  direct  inference  of  the  impact  of  climate  shocks.

Perennial crops, particularly tree crops, have received less attention, despite

the US$538tn 2019 gross production value of perennial tree crop agriculture

globally12 and the importance of these crops to livelihoods13. The possibility of

delayed impacts of ENSO over the multi-annual life cycle of perennial crops

further highlights the need to address this research gap.

Here, we use a novel big data approach for understanding the impact of ENSO

phase on perennial tree crops using long term data of a model system: cocoa

agriculture in Ghana. Cocoa (Theobroma cacao L.)  is grown throughout the

tropics  by 5-6 million farmers,  with 90-95% of  production from smallholder

farms of 3 hectares or less14. Ghana and neighbouring Cote d’Ivoire, sharing a

similar climate and ecology, are the world’s top cocoa producers12 (Figure 1B)

in a global raw market worth US$8.2bn in 2019. As the raw material of a major

global food industry, the implications of volatility in cocoa production reach

beyond  farmers  to  affect  major  cocoa-producing  states  and  multinational

companies. Here, we investigate (i) the instantaneous and delayed responses of

cocoa production to ENSO phase, (ii) change in these responses over time and

(iii)  the  local  climatic  impacts  of  ENSO phase to  identify  potential  climatic

drivers of cocoa production during climate shocks.

ENSO drives multi-year fluctuations in production

We firstly  aimed to  characterise  the  instantaneous  and  delayed  impacts  of

ENSO phase on cocoa production in recent decades, expecting from previous

research8,15,16 to see production declines in El Niño years. We acquired annual

total production weights for the 68 cocoa producing districts (Figure 1a) for 21

purchase  years  1999/2000  to  2019/20.  To  control  for  technological

improvement and variation in the area under production over time and space,

we detrended each district’s production, taking the z-scores of the observations

from the linear  trend of  production  over  time.  ENSO phase was  measured

using  the  Oceanic  Niño  Index17,  summarised  for  each  purchase  year  by

calculating  the  maximum  annual  magnitude  (mamONI).  To  investigate

instantaneous and delayed effects of ENSO phase, detrended production in a
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4
given year t was fitted using multiple regression against mamONI for the same

and 3 prior years (i.e. years t to t-3). Mean detrended production significantly

declined with  increasing mamONI in  year  t,  i.e.  production  is  greater  than

average during La Niña and lower than average during El Niño years (Figure

2a). We also see significant relationships between mean detrended production

and mamONI in years t-1, t-2, and t-3 (Figure 2b-d), indicating delayed effects

on production.

ENSO production responses have changed over time

To explore changes in the impact of ENSO phase over time, particularly any

signal of anthropogenic climate change, we acquired production data from the

six cocoa producing regions (Figure 1) for purchase years 1947/48 to 2019/20

and employed a similar detrending process as for the district data, removing

the 9-year moving average rather than the linear trend. We performed multiple

regression analyses as described above, which demonstrate a similar pattern to

the  district  analysis,  but  the  significant  instantaneous  negative  effect  is

reduced in magnitude (Figure 2e), and all terms are less significant (Figure 2f-

h).  This  difference  arises  because  the  production  response  to  ENSO  has

changed: comparison of candidate models allowing the response to mamONI to

vary  in  time  returned  a  best  model  fitting  a  break-point  in  the  ENSO-

production relationship between the 1986/87 and 1987/88 purchase years, with

other  high-scoring  models  fitting  break-points  between  1985  and  1988

(Supplementary Table 1). Hence, since the mid-1980s (“recent”),  the ENSO-

production relationship mirrors that of the district data (Figure 3d-f), but prior

to this (“past”), patterns of production in relation to ENSO were significantly

different (Figure 3a-c). 

ENSO impacts on local climate

The impact of ENSO on cocoa production is mediated through climate, thus we

sought to examine the ENSO-climate relationship in Ghana’s cocoa production

zone  during  the  purchase  year,  and  explore  the  extent  to  which  this

relationship  may  also  have  changed  over  the  time period  of  our  long-term

production  dataset.  We  carried  out  analyses  for  each  (i)  month  and  (ii)

climatological  season,  regressing temperature,  precipitation  and (maximum)
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5
climatological water deficit (month: CWD, season: MCWD) against mamONI,

fitting time period  (“past” or “recent”) as an interaction. These results show

that in “recent” purchase years (orange lines,  Figure 4), El Niño conditions

cause significant increases in temperature across all seasons and decreasing

rainfall in most seasons, particularly the major wet season; conversely, La Niña

conditions  bring  cooler,  wetter  conditions.  Drought  stress  responds

accordingly:  El  Niño  brings  significant  increases  in  drought  stress  (lower

MCWD) compared with La Niña in most seasons, although the effect is slight.

Comparing “past”  and “recent”  climatic  responses to  ENSO phase (blue vs

orange  lines,  Figure  4)  shows  significant  increases  in  mean  temperature

throughout the year, so while the magnitude of the warming trend has either

not  changed  or  lessened,  “recent”  El  Niños  nonetheless  bring  mean

temperatures  not  experienced  in  the  “past”.  Rainfall  has  changed  less

substantially over time; while the changes in mean rainfall are significant, they

remain  small,  apart  from  in  the  major  dry  season  which  has  become

substantially  drier over time. This results  in a significant decrease in mean

MCWD in the major dry season between “past” and “recent” years, denoting

greater drought stress (Figure 4j). In general, across all metrics and seasons,

the  slopes  of  the  effect  of  mamONI  on  climate  metrics  are  shallower  in

“recent” years compared with the “past”,  suggesting that ENSO phase now

drives less climatic variation among ENSO phases (between El Niño and La

Niña years) than in the past.

MCWD  has  significantly  reversed  direction  during  the  major  wet  season

between “past” and “recent” years (Figure 4k). In the “past”, El Niño brought

increased drought stress, as expected by the warmer, drier conditions (Figure

4c, g), while in “recent” years drought stress appears to  decrease during El

Niño,  despite  the  same  conditions.  This  result  appears  counterintuitive;

however the monthly analyses (Figure 5,  Supplementary Figure 1) show an

ongoing impact on CWD of significant changes in rainfall earlier in the year,

namely a reversal in direction of the rainfall response to ENSO phase during

March and April (Figure 5s, t). El Niño brings increased rainfall in “recent”

years compared with decreased rainfall in the “past”, reflected in the March

and April  CWD (Figure  5ae,  af),  and  this  increase,  coupled  with  generally
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6
increasing  average  rainfall  and  slightly  decreasing  average  temperature

entering the major wet season, results in decreased CWD for several months.

Summary and criticism

Using  a  robust  recent  dataset,  our  analyses  show that  cocoa  production  is

significantly affected by the maximum magnitude of ENSO phase during the

current and previous purchase years (Figure 2).  The instantaneous effect is

negative, followed by delayed positive effects in the two following years and

negative in the third following year, combining to give a picture of multi-year

fluctuations in cocoa production as a result of El Niño/La Niña events. Using a

70-year  dataset,  we  show  significant  changes  in  these  instantaneous  and

delayed ENSO-production relationships between recent and past time periods

(Figure  3).  Using  ERA5  data  for  the  cocoa  production  area  of  Ghana,

summarised  at  the  same  temporal  resolution  as  the  production  data,  we

demonstrate significant relationships between ENSO phase and climate, with

significant changes in mean climate and in ENSO-climate relationships (Figure

4) between recent and past time periods. 

Our 70-year production dataset represents a temporal extent unmatched by

other research, however was aggregated to fewer replicates than the 21-year

analysis (6 regions vs 68 districts). While this may represent reduced power,

results from the overlapping time period of the two datasets strongly agree.

The computation of yield, a more comparable metric between different-sized

areas  than total  production,  was  not  possible  because  data  on  area  under

production  (AUP)  were  not  available.  However,  the  detrending  process

employed  successfully  eliminated  variation  between  districts  or  regions  (of

which  AUP  is  likely  a  substantial  component)  and  long-term  technological

trends that would otherwise confound our ability to isolate the ENSO signal

(Supplementary results).

Cocoa crop biology

Perennial crops have multi-year growing patterns, with allocation of resources

to growth, development and reproduction driven by climate in ways that aren’t

fully understood18. ENSO generally peaks between October and December, also

the busiest cocoa purchase period: thus we observe a relatively instantaneous

6
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7
apparent  effect  of  ENSO  phase  on  cocoa  production.  This  reduction  is

consistent  with  other  work  on  cocoa  responses  to  El  Niño  from  farm

monitoring8,  large-scale  farm  surveys15 and  analyses  of  production  data16.

During the main cocoa purchase period, coinciding with the minor wet and

major  dry  seasons,  we  observe  increases  in  water  deficit  during  El  Niño,

leading  to  drought  stress  conditions.  In  small-scale  cocoa  studies,  drought

stress  is  correlated  with  reduction  in  pod  production  and  increased  tree

mortality8,19, and in similar studies of other tree crops drought is directly linked

to reduction in fruit or nut production20, although in all cases the mechanisms

are unclear. Drought may generally create unfavourable conditions for growth

and reproduction through reduced availability of water for vital processes, or

more specifically by promoting disease incidence and pod rot8, increasing the

chance  of  fire,  increasing  competition  for  soil  moisture19,  and/or  reducing

pollinator  populations21.  Alternatively,  cocoa  may respond to  reduced water

availability  by  reallocation  of  resources  away  from  energetically  expensive

reproduction: rainfall exclusion experiments suggest that in the medium term,

while  bean production drops,  vegetative growth is  not  significantly  reduced

during drought19. 

The significant increases in mean temperature and average drought stress we

observed  in  some  seasons  over  time  is  such  that  the  climate  experienced

during El Niño events in recent decades represent novel extreme conditions for

Ghana’s cocoa agriculture. This causes significant changes in the responses of

cocoa production to ENSO phase over the same time period. One explanation

for this may be that the warm, dry El Niño conditions in Ghana in the past were

within the environmental tolerance of cocoa, leading to allocation of resources

to reproduction in response to drought, increasing cocoa bean production and

resulting in less severe instantaneous and delayed responses to ENSO phase

(Figure 3a-d) However, in recent decades this level or greater drought stress

has  become  the  norm  (Figure  4i-l),  with  El  Niño  conditions  apparently

triggering  a  different  response  mode,  allocating  resources  away  from

reproduction in the short term and creating oscillating resource allocation over

the following years. 

However,  understanding  the  delayed  responses  of  cocoa  is  challenging,
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8
especially  as  these  represent  a  novel  finding.  There  is  little  research  that

explores  multi-annual  physiological  or  ecological  responses  of  cocoa  to

drought,  and  the  explanation  is  likely  to  be  a  combination  of  both

residual/delayed  climatic  responses  to  ENSO  phase,  and  of  life  history

strategies. The observed increase in production during the two years following

El  Niño  may  be  explained  by  post-drought  reallocation  of  resources  to

reproduction as remediation for lost reproductive output in the instantaneous

response,  or  a  shift  to  a  ‘faster’  strategy  by  allocating  resources  to

reproduction over the longer term, becoming evident in the data in subsequent

years. Alternatively,  this may be explained by favourable climatic conditions

occurring during an El Niño event that impact the following years’ crop. March

and April is a crucial time for cocoa pod development in Ghana and in recent

years El Niño appears to bring greater rainfall during these months. Given the

6-9 month development of cocoa beans, the effects of this increased rainfall

and reduced water  deficit  on cocoa  production  will  be seen in  the delayed

response.  We see evidence of  this  in  the  climate-change driven reversal  of

March-April  rainfall  patterns:  while  in  the  past  El  Niño  has  consistently

resulted  in  drought  stress,  this  reversal  provides  a  respite  from  drought,

buffering trees from reduced rainfall during the major wet season and giving

sufficient resources for improved production in the following year. 

The global perspective

The robustness of our results provide evidence that may aid development of

resilience strategies for ENSO-driven cocoa production variation in Ghana, but

we  may  also  consider  whether  these  results  can  be  generalised  to  the

production of cocoa and/or perennial tree crops globally. The climatic impact of

ENSO  observed  in  Ghana  is  broadly  consistent  with  many  regions  of  the

tropics2,  the  instantaneous  cocoa  production  responses  to  El  Niño  are

consistent with findings in these regions, and so we may expect these regions

to see a similar pattern of multi-annual cocoa production variation in response

to ENSO phase. However, there is considerable variation in ENSO responses

among  and  within  other  perennial  tree  crops  in  regions  where  climatic

responses to ENSO are similar to Ghana. Oil palm yields have been negatively

associated  with  ENSO phase  in  Malaysia9,  as  have olive  yields  in  Morocco
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9
(delayed by a year20). Conversely, apple yields have been positively associated

with ENSO phase in  China10,  as have coffee yields  in  Brazil22;  however,  no

effect at all is seen in coffee in India over a 35-year time series7. Most of these

analyses  considered only  a single ENSO phase (usually  El  Niño),  and most

considered only instantaneous impacts. However, it is clear that most of these

crops do respond to ENSO, and given the shared biology it is reasonable to

assume that delayed effects of ENSO phase are likely and should be considered

to understand the full picture of ENSO impacts on perennial tree crops.

The larger body of research into ENSO impacts on annual crops includes many

studies  using  long  time  series,  reporting  high  heterogeneity  in  space  and

among crops11,23,24. However, there appears to be little examination of changes

in the direction and magnitude of ENSO responses over time; thus our findings

are timely and signal that further research is needed to examine how changing

climates  may  force  novel  extreme  climatic  conditions  and  shift  response

patterns to ENSO phase. Given that perennial tree crops are generally cash

crops, and the utility of these crops to farmers are to a greater or lesser extent

mediated by market forces, there is a need for improved forecasting of yield in

response  to  changing  climate  and  ENSO  patterns  to  withstand  production

fluctuations.  The low perishability  of  many perennial  tree crops means that

with accurate forecasting, supply may be managed or even exploited to ensure

consistency of income both for farmers and those whose livelihoods depend on

related food manufacturing industries.

Big data approaches

Our approach to understanding the responses of a perennial tree crop to ENSO

phase and anthropogenic  climate  change exploited  existing  global,  national

and subnational datasets for climate and production with appropriate spatial

and temporal resolution. We use freely available geographic and climate data,

and   employ  highly  replicable  methods:  a  simple  pipeline  of  climate  data

aggregation and summary computation, coupled with standard detrending and

straightforward  analytical  methods  with  a  relatively  small  computational

requirement.  This  “big  data”  approach  to  agriculture-climate  research

demonstrates  a  relatively  straightforward  framework  for  understanding

responses  of  agricultural  productivity  to  climate  and  identifying  temporal

9
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10
changes  in  these  relationships.  While  small-scale  studies  examine  the

mechanisms of climate impacts through the interacting effects of agricultural

practices, abiotic conditions, disease incidence and multi-trophic interactions,

large-scale studies across regions and over time scales encompassing many

ENSO oscillations are required to understand the global picture of perennial

tree crop production security. Combined with local context-specific studies on

governance arrangements (e.g. Hirons et al. 201825), such approaches could be

crucial  for  reducing  future  vulnerability  of  these  industries  to  increasing

volatility  under  anthropogenic  climate  change.  The  main  barrier  to  this

research  is  the  availability  of  production  data  from  state  or  commercial

entities. 

Conclusions

Using cocoa production in Ghana as a model perennial tree crop system, we

demonstrate that ENSO phase has a significant impact on crop production,

likely mediated by simultaneous impacts on local climate. In a novel finding, we

also  show  delayed  effects  of  ENSO  phase  on  production.  Crucially,  we

demonstrate that the direction of production impacts has reversed over time,

coinciding with changes in the climatic responses to ENSO, suggesting that

anthropogenic climate change is altering how this perennial tree crop responds

to climate shocks. We speculate that similar patterns are likely to occur in at

least some other perennial tree crops, and urge for further research to emulate

our  straightforward  “big  data”  approach  in  other  crops  to  identify  these

patterns and contribute towards efforts to predict and manage the impacts of

climate change on the millions of livelihoods dependent on this agricultural

sector.

Methods

Cocoa production data acquisition

Cocoa production data in metric tons was supplied by the Ghana Cocoa Board,

corresponding to the annual total weights of all cocoa bean purchases in each
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11
of the 6 cocoa purchase regions for every purchase years 1947/48 to 2018/19

(excluding 1976/77 for two regions),  and in each of  the 68 cocoa purchase

districts for each of the purchase years 1998/99 to 2018/19. Each of the 68

cocoa purchase districts is within one of the 6 regions.  Purchase years run

from  late  September/early  October  for  12  months;  for  this  study,  every

purchase  year  was  assumed  to  begin  on  1st  October  and  run  until  30th

September of  the  following  year.  Metric  tons were converted to kilograms.

Production weights varied substantially between administrative divisions, and

within administrative divisions over time, presumably in the most part due to

variation in the area under production (AUP) for which no data was available.

To  control  for  the  effect  of  varying  AUP,  and  lesser  effects  such  as

technological  improvements  in  farming  practice,  the  production  data  was

detrended by conversion to z-scores,  i.e.  the number of standard deviations

from the mean or expected value.  For district  data,  z-score calculation was

performed based on a linear best fit line for each district, i.e. the z-score for a

particular observation was the number of standard deviations from the value of

the  slope  for  that  year;  for  regional  data  a  linear  relationship  was  not

appropriate so z-score calculation was performed based on a 9-year rolling

average of production.

ENSO data acquisition

To identify  El Niño and La Niña events, we acquired the complete Oceanic

Nino  Index  (ONI)  dataset  since  1950  from  NOAA  (Huang  et  al  2017),

comprising rolling 3-month running means of SST anomalies in the Nino 3.4

region. This data was summarised for each purchase year (Oct-Sep, see above)

by taking the value of the greatest magnitude (retaining the sign) within each

purchase year, referred to as maximum annual magnitude of ONI (mamONI). 

Climate data acquisition

ERA526 climate data was acquired from the Copernicus Climate Data Service

using the CDS API in a custom python script. We acquired hourly data at a

0.25° resolution between -3.5° to 1° longitude and 4.5° to 8.5° latitude, for the

full period of the 1950 to 1978 preliminary back extension dataset and from

1979 to 2020 from the final release dataset, for the variables 2m temperature,
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12
total precipitation and evaporation as netcdf raster bricks.. All variables were

summarised  by  day  for  each  grid  cell,  calculating  the  daily  total  for

accumulating  variables  precipitation  and  evaporation,  and  daily  minimum,

mean and maximum for temperature (i.e. instantaneous variables).

All climate variables were then summarised over month and season, defining

the minor wet as September and October, the major dry season as November

to March, the major wet season as April to July, and the minor dry season as

August, calculating total values for accumulating variables and minimum, mean

and maximum for instantaneous variables. We calculated monthly Cumulative

Water Deficit (CWD) for each cell (Aragão et al 2007) based on monthly totals

of precipitation and evaporation, resetting CWD to 0 for the wettest month for

each cell or if rainfall exceeded twice the evaporation for a given month. Thus

for each purchase year (Oct-Sep, see above) we generated 12 monthly and 4

seasonal values for each climatic metric; note the minor wet season crosses the

purchase year, we considered this as falling at the beginning of a purchase

year  rather  than  the  end.  Finally,  each  climate  metric  was  converted  to

anomalies by subtracting the mean value for the metric for a reference period,

set to 1981-2010 to encompass only data from the final release ERA5 dataset.

Mean values were computed across months and seasons to retain variation

among months/seasons. The final dataset comprised climate data for the 70

cocoa  purchase  years  1950/51  to  2019/20,  i.e.  from  October  1950  to

September 2020.

The monthly and seasonal summary raster bricks were filtered to include only

cells that intersected with Ghana’s cocoa growing areas and and comprised

less than 15% permanent water bodies, based on the preliminary observation

that  cells  including  the  Atlantic  ocean  or  the  Volta  river/reservoir  formed

substantial outliers for some climatic variables. Filtering used spatial polygons

of the Ghana cocoa regions supplied by the Ghana Cocoa Board, the Ghana

coastline27, and Ghana water bodies28.

All GIS data manipulation and computation was performed in R 4.0.529 using

the sf30 and stars31 geospatial packages and their dependencies.

Cocoa production analysis
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All  analysis  was  performed  in  R  4.0.529.  To  identify  possible  delays  in  the

relationship between ONI and production we computed, separately for each

district or region, the cross-correlation of the production anomaly time series

against the mamONI time series for delays of 0 to 12 (i.e. production anomaly

against mamONI values for the current and 12 preceding years) and computed

the  probability  of  each  correlation  coefficient  differing  from  0.   For  each

dataset  (district,  regional),  we  then  calculated  the  mean  of  all  correlation

coefficients for each of the 13 delays, and computed student’s t to test if this

mean  was  significantly  different  from  0.  To  ensure  that  the  detrending

methodology had sufficiently standardised the production data for regression

to  be  appropriate,  we  conducted,  separately  for  each  district  or  region,  a

search of  ARIMA models  to ensure that the best  fitting parameters for  the

order of autoregression, degree of differencing and moving average were all

equal to 0. This search was implemented in the auto.arima function from the

forecast R package32, fitting mamONI as an external regressor, using AIC to

compare  candidate  models  and  using  non-stepwise  selection  and  no

approximation  of  information  criteria  for  intermediate  models  to  improve

accuracy.  For both district and regional data, the majority of time series had

parameter values of 0 for all three parameters (Supplementary Table 2). To

ensure  that  the  detrending  methodology  had  sufficiently  standardised  the

production data such that no remaining inter-district or inter-regional variation

remained,  we  checked  the  singularity  of  a  mixed  effects  model  for  each

dataset,  fitting  detrended  production  against  the  intercept  with  district  or

region as a random effect using the isSingular and lmer functions from the

lme4  package33.  We  would  expect  that  if  detrending  sufficiently  removed

variation in the random effect, the resultant random effect variance would be

close to zero and cause singularity.

To assess the contribution of different delayed mamONI values on the district-

level  production dataset,  we performed multiple  regression with production

anomalies as the response variable and mamONI at delays of 0 to 3 as additive

explanatory variables. The same model was also implemented in a linear mixed

effects  model,  fitting  district  as  a  random effect,  which  validated  that  the

detrending methodology sufficiently removed all meaningful variation between

districts  and  that  excluding  this  variable  was  appropriate.  For  the  region
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dataset, we additionally wanted to explore the extent to which the response of

production to variation in mamONI has changed over time. To this end, we

generated 71 two-factor categorical variables that each grouped observations

into before/after each year in the dataset, to examine inflection points in the

response of production to ONI.  We then created a set of candidate models as

follows: (i) the same model as used in the district data, with four delays; (ii) the

model (i), but with year (centred and scaled to unit variance) as an interaction

with each delayed mamONI variable; (iii) 71 piecewise regressions, each based

on model (i) but with one of the year grouping variables as an interaction with

each  delayed  mamONI  variable.  The  73  candidate  models  were  compared

using AICc, implemented in the model.sel function of the MuMIn R package34. 

Climate analysis

The  purpose  the  climate  analysis  was  to  demonstrate  the  climatological

teleconnections between the Oceanic Nino Index and cocoa production through

i) identifying instantaneous climatic responses in the cocoa producing areas of

Ghana to ONI-defined El Niño events and ii) identifying any leading or delayed

climate signal associated with ONI in these areas. To identify possible delays in

the relationship between ONI and climate we computed, separately for each

climate metric, the cross-correlation of the climate metric anomaly time series

against  either  monthly  ONI values (for  monthly  climate  metrics)  or  against

mamONI  values  (for  the  purchase  year  corresponding  to  seasonal  climate

metrics). Cross-correlations were performed for leads/delays between -36 and

36  months  or  -3  to  3  years,  as  appropriate;  statistical  tests  were  then

performed  as  described  for  the  cocoa  production  data.  We  then  regressed

monthly  and  seasonal  climate  metrics  against  mamONI  values  separately

within month and season, and examined these relationships for changes over

time  by  fitting  interactions  with  year  grouping  variables  using  the  same

methodology described in the cocoa production analysis.
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Main figures

Figure 1: Cocoa production in Ghana. (a) map of cocoa producing districts (blue outlines) and regions
(red outlines) in Ghana. (b) Global cocoa production over the last 60 years. (c) Cocoa pods on a farm in
Ghana (photo copyright A.C.M.)



Figure 2: The instantaneous and delayed responses of cocoa production to ENSO phase, represented as
mamONI. Vertical dashed lines delineate La Nina (mamONI <= -0.5), Neutral ( -0.5 < mamONI < 0.5) and
El Nino (mamONI >= 0.5) conditions. The relationships between Production Anomaly and mamONI
through time are explored using a multiple regression for each dataset (panel rows: District dataset,
1999/2000 - 2019/20, a-d; Regional dataset, 1947/48 - 2019/20, e-h) fitting the Production Anomaly in
year t against mamONI in years t to t-3 (panel columns). Lines show the best linear fits and standard
errors derived from each multiple regression. Significance stars denote the probability that a slope differs
from zero (***: p<0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1). Adjusted R squared for the District model was
0.20, for the Regional model 0.05.



Figure 3: The changing response of cocoa production to mamONI over time in the Regional dataset,
separated into “past” and “recent” purchase years. Vertical dashed lines delineate La Nina (mamONI <=
-0.5), Neutral ( -0.5 < mamONI < 0.5) and El Nino (mamONI >= 0.5) conditions. Lines show the best linear
fits and standard errors derived from a single ANCOVA model fitting a two-level factor splitting the data
into two time periods as an interaction with each of the four year delays. Significance stars denote the
probability that: top row (a-d) - the slopes for each lag (columns) differ from one another; bottom row
(e-h) - the slope differs from zero (both rows - ***: p<0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1). Adjusted R
squared for the ANCOVA model was 0.17.



Figure 4: The response of climate to mamONI in different seasons during the purchase year, grouped into
two sets of years corresponding to the best fitting break-point in the production data. Seasons are shown
in chronological order during the purchase year. Vertical dashed lines delineate La Nina (mamONI <=
-0.5), Neutral (-0.5 < mamONI < 0.5) and El Nino (mamONI >= 0.5) conditions.  Lines show the best linear
fits and standard errors derived from 12 individual regressions of seasonal climate against mamONI,
with an interaction term fitting the year category. Significance stars denote p-values derived from these
models (***: p<0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1): (i) difference in means between year groups
(delta in centre of plot), (ii) difference of the 1987/88-2018/19 slope from 0 (orange stars at right of
plot), (iii) difference between slopes (delta at right of plot). The adjusted R squared value is displayed for
each model.



Figure 5: The response of climate to mamONI in selected months during the purchase year, grouped into
two sets of years corresponding to the best fitting break-point in the production data. Supplementary
Figure 1 shows a complete version with all months; panel letters are consistent across this plot and
Supplementary Figure 1, hence the missing letters in this plot. Lines show the best linear fits and
standard errors derived from individual regressions of monthly climate against mamONI, with an
interaction term fitting the year category. All colours and notations as in Figure 4.
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