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Evaluating the convergence between
eddy-covariance and biometric methods
for assessing carbon budgets of forests
M. Campioli1, Y. Malhi2,*, S. Vicca1,*, S. Luyssaert3,*,w, D. Papale4,5, J. Peñuelas6,7, M. Reichstein8,

M. Migliavacca8, M.A. Arain9 & I.A. Janssens1

The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric

methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial

ecosystems and the atmosphere (net ecosystem production, NEP) and its two components,

ecosystem respiration and gross primary production. Here we show that EC and BM provide

different estimates of NEP, but comparable ecosystem respiration and gross primary

production for forest ecosystems globally. Discrepancies between methods are not related to

environmental or stand variables, but are consistently more pronounced for boreal forests

where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary

production and overestimation of leaf respiration. EC biases are not apparent across sites,

suggesting the effectiveness of standard post-processing procedures. Our results increase

confidence in EC, show in which conditions EC and BM estimates can be integrated, and

which methodological aspects can improve the convergence between EC and BM.
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T
he exchange of carbon dioxide (CO2) between terrestrial
ecosystems and the atmosphere is one of the major
interactions between the biosphere and the atmosphere

(Fig. 1), a key descriptor of ecosystem functioning and a major
influence on atmospheric CO2 concentration. Two empirical
approaches are generally used to quantify ecosystem CO2

exchange at the ecosystem level: the eddy-covariance technique
(EC) and biometric methods (BM).

The EC technique features sound underlying micro-
meteorological principles, continuous monitoring, little perturba-
tion or damaging of the system sampled and a sampling area
(footprint) well suited for the scale of ecosystem-level estimates
(Table 1). The long time series with high temporal resolution
generated by EC can give detailed insights into the interactions
between CO2 fluxes and synoptic and seasonal variability.
Therefore, EC is very attractive for long-term monitoring of the
net ecosystem-atmosphere CO2 exchange1 (or net ecosystem
production2, NEP) and for the elucidation of its temporal changes
and environmental controls. These properties have made EC the
dominant methodology for estimating net and bulk fluxes of CO2

exchange1,3,4 and the standard method in a number of long-term
and large-scale research infrastructures (for example, ICOS,
NEON, AmeriFlux, TERN). However, as with every experimental
method, EC has some drawbacks (Table 1), three of which are of
particular importance. First, advective and low-frequency flows
of CO2 are difficult to capture and can potentially lead to
underestimation of fluxes during periods with low air turbulence,

typically ecosystem respiration at night5. This drawback is
particularly important in the presence of variable topography,
favouring air drainage and breezes6, or thick canopy, hindering
mixing of the air within and above it7,8. Second, EC has a
persistent inability to close the surface energy budget, leading to
fears that if energy fluxes are being underestimated, then CO2

fluxes may also be underestimated1. Third, EC measures NEP
directly, but its two main components, ecosystem photosynthetic
CO2 uptake, or gross primary production (GPP), and ecosystem
carbon (C) release, or ecosystem respiration (Reco) (Fig. 1), can
only be estimated indirectly by post-processing the data of CO2

exchange9,10. In other words, EC relies on a single measurement
to estimate net and bulk CO2 fluxes.

The BM approach uses a well-established but un-standardized
set of techniques, such as plant growth assessment, chamber-
based flux measurements and repeated stock inventories that
allow a direct estimation of the component processes of the
ecosystem C cycle (for example, net primary production (NPP),
heterotrophic respiration (Rh) and autotrophic respiration (Ra);
Fig. 1; Table 1) and changes in soil and biomass stock, from
which NEP, Reco and GPP can be calculated. Advantages of this
approach include insights into the internal C dynamics of an
ecosystem, (for example, partitioning between Ra and Rh,
allocation of photosynthates between Ra and NPP and allocation
of NPP between leaves, wood and fine roots), and applicability to
almost any site (for example, small plots, sites with strong spatial
heterogeneity, high canopy thickness or steep topography) and
meteorological conditions (for example, periods with low air
turbulence) without the requirements imposed by the EC
technique. Typically, BM approaches are also very useful for
evaluating the impact of environmental manipulative experiments
on the C cycle11, whereas EC cannot be applied to experimental
plots of limited size5. On the other hand, BM approaches also
have drawbacks (Table 1). In particular, biometric measurements
are typically performed on few replicated individuals and plant
organs (for example, few leaves and branches) or small ecosystem
plots that need to be up-scaled, assuming homogeneity within
and among plants and in all relevant environmental variables
(for example, soil moisture, nutrients, microclimate, soil type).
Moreover, there is always the possibility that some potentially
important components of the C budget have not been accounted
for (for example, transfer of photosynthates to mycorrhizae
production, ground flora productivity or loss to herbivory) and
that some of the biometric techniques can disturb the portion of
the ecosystem being sampled (for example, root measurements
disturb the soil, stem respiration chambers can affect
microclimate and pressure of the air space sampled). Finally,
most biometric measurements cannot be easily monitored
continuously, making the linkage between changes in fluxes to
specific weather events more challenging.

As the advantages of BM (for example, applicability to most
sites and environmental conditions) largely match the potential
disadvantages of the EC technique (and vice versa) and the two
techniques are fully independent, the comparison between EC
and BM has been developed as the most suited way to
corroborate both approaches12. NEP estimates obtained with
EC and BM have been compared in a number of studies, but no
clear picture has yet emerged. Agreement of multi-year NEP
estimates between methods varied widely among sites, from
very good13 to very poor14. A primary cause of our limited
understanding of EC–BM convergence lies in the fact that
existing empirical studies are based only on one or few sites
(for example, five sites12) and very few studies have attempted
quantitative multi-site syntheses15. In practice, this has made it
difficult to pin-point the reasons behind the observed cases with
low convergence because statistical analyses have not been
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Figure 1 | Schematic representation of the major components of the

forest carbon cycle. Raaboveground and Rabelowground: above- and below-

ground autotrophic respiration, respectively (their sum is indicated as Ra);

Rh-soil and Rh-cwd: heterotrophic respiration from soil and coarse woody

debris, respectively (their sum is indicated as Rh); NPPaboveground

and NPPbelowground: above- and belowground net primary production,

respectively (their sum is indicated as NPP); Reco: ecosystem respiration

(Reco¼ RaþRh); GPP: gross primary production (GPP¼NPPþ Ra), and

NEP: net ecosystem production (NEP¼GPP� Reco¼NPP�Rh). Each flux

is associated with an arrow. Arrows pointing down indicate carbon (C)

uptake, arrows pointing up indicate C release, whereas the up-down arrow

indicates that both C release and C uptake can occur. The dark blue arrow

indicates NEP, the mid-blue arrows indicate the primary components of NEP

(Reco and GPP), whereas the light blue arrows indicate the components of

Reco and GPP.
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undertaken yet. Comparability of BM and EC estimates for Reco
and GPP has been studied even less than for NEP. We are not
aware of any multi-site synthesis efforts and existing comparisons
are limited to 3–4 sites within the same region16,17. Lack of
knowledge about EC and BM comparison for Reco and GPP
complicates the analysis of NEP estimates obtained by the two
approaches (for example, the two approaches could give similar
NEP while diverging in their estimation of the two components).
As a result of the multiple limitations on the corroboration of the
empirical estimates of NEP, Reco and GPP, our understanding of
the uncertainty of ecosystem C fluxes has stagnated for over a
decade: the suspected biases of EC have not been clarified18 and
the uncertainties in BM estimates remain underexplored.

Here we investigate the agreement between EC- and BM-based
estimates of ecosystem CO2 fluxes by addressing three research
questions: how do EC and BM-based fluxes compare across and
within the boreal, temperate and tropical forest zones? Is any
discrepancy between EC and BM flux estimates related to stand,
environmental and methodological variables? Can the EC–BM
comparison provide insights into long-standing suspected biases
of the EC technique? The answers are provided by analyzing a
novel EC and BM data set comprising annual estimates of NEP,
Reco and GPP for 40 sites across five continents, spanning boreal,
temperate and tropical forests. The convergence between EC and
BM fluxes is analysed through the absolute and relative flux
difference, globally and for the three climatic zones separately,

Table 1 | Positive and negative characteristics of eddy-covariance and biometric methods.

Characteristics of the technique EC BM

Directness of approach1,25 þ þ *, /� � w þ
Temporal and spatial up-scaling1,18 þ � �
Applicability to small-footprint studies � þ þ
Interference with sampled system1 þ þ �
Sensitivity to low turbulence environment1,8,18 � � þ
Impact of measuring set-up on microclimate1,53 þ �
Impact of complex terrain1 � þ þ
Compartment-level understanding and partitioning of fluxes and allocation16 � þ þ
Unaccounted/miscounted carbon fluxes at tree organ/ecosystem compartment level (e.g. understory fluxes, herbivory)16,54,55 þ þ �
Set-up costs56 � � þ þ
Ongoing labour requirements1 þ �
Technical capacity requirements for data collection and processing � � þ

Very positive (þ þ ), positive (þ ), negative (� ) or very negative (� � ) characteristics of the eddy-covariance (EC) and biometric (BM) methods used for the determination of net ecosystem
production (NEP), ecosystem respiration (Reco) and gross primary production (GPP) of forest ecosystems.
*NEP.
wReco and GPP.

Table 2 | Comparison of carbon fluxes obtained from eddy-covariance or biometric methods for forests worldwide and in the
main climatic zones.

BM versus EC BMDS versus EC

NEP Reco GPP NEP

Global
Site replicates (n) 31 25 18 7
Absolute difference (mean±s.e.m) � 98±32 120±61 25±67 32±87
Significance difference (P) 0.0042** 0.061þ 0.71 0.73
Relative difference (mean±s.e.m in %) NA 13±4 5±4 NA

Boreal
Site replicates (n) 6 6 4 1
Absolute difference (mean±s.e.m) � 167±44 189±75 89±59 26
Significance difference (P) 0.013* 0.031* 0.23 NA
Relative difference (mean±s.e.m in %) NA 18±7 8±5 NA

Temperate
Site replicates (n) 22 15 11 6
Absolute difference (mean±s.e.m) �95±28 160±85 59±100 33±102
Significance difference (P) 0.0028** 0.079þ 0.57 0.76
Relative difference (mean±s.e.m in %) NA 16±6 6±6 NA

Tropical
Site replicates (n) 3 4 3 NA
Absolute difference (mean±s.e.m) 10±275 � 137±138 � 182±119 NA
Significance difference (P) 1.0 0.39 0.26 NA
Relative difference (mean±s.e.m in %) NA � 5±5 � 5±3 NA

Statistics of the comparison of net ecosystem production (NEP), ecosystem respiration (Reco) and gross primary production (GPP) at global scale and for the boreal, temperate and tropical zones,
separately, assessed with eddy-covariance (EC) and two types of biometric methods: standard biometric methods based on measurements of production and respiration (BM) and biometric methods
based on consecutive inventories of ecosystem carbon stocks (BMDS). The difference between methods is expressed as Absolute difference (BM estimate � EC estimate) and Relative difference
(BM estimate � EC estimate)/((BM estimate þ EC estimate)/2). Difference at 0.001oPo0.01, 0.01oPo0.05 and 0.05oPo0.10 are marked with **, * and þ , respectively. The notation NA
indicates data not available.
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and by testing the correlation of the flux differences with a large
set of stand, environmental and methodological variables (for
example, indices of topographical complexity, leaf are index,
mean annual temperature, approaches to scale up the tree
respiration). It is found that EC and BM provide globally
comparable estimates of Reco and GPP but different NEP, which
is smaller and more susceptible to biases. Moreover, biases of
opposite direction are likely to cancel out when estimating Reco
and GPP. Low convergence is associated with BM approaches
underestimating NPP and neglecting light inhibition of leaf dark
respiration, with discrepancies more pronounced for the boreal
zone. Major EC biases are not apparent across sites, increasing
our confidence in this technique.

Results
Data set of process components of ecosystem carbon cycle. Our
uniform and quality-checked data set of BM and EC-based forest
C fluxes comprised 31 sites with BM-based NEP (NEPBM) and
EC-based NEP (NEPEC), 25 sites with BM-based Reco (RecoBM)
and EC-based Reco (RecoEC) and 18 sites with BM estimates of
GPP (GPPBM) and EC estimates of GPP (GPPEC) (Supplementary
Tables 1–4; Supplementary Fig. 1; Supplementary Data 1). About
60–70% of the sites were in the temperate zone, 20–25% in the
boreal zone and 10–15% in the tropical zone (Table 2). NEP
ranged from � 110 to 830 gC m� 2 y� 1, Reco from 460 to
3,300 gC m� 2 y� 1, and GPP from 600 to 3,600 gC m� 2 y� 1

(EC data). Furthermore, BM data allowed insights into the dif-
ferent components of the C cycle of the studied forests. First, NPP
ranged from 170 to 1,500 gC m� 2 y� 1, Ra from 490 to
1,900 gC m� 2 y� 1 whereas soil heterotrophic respiration (Rh-
soil) from 170 to 1,400 gC m� 2 y� 1. Second, leaves, above-
ground wood and roots accounted on average for 30±2% (mean
and s.e.m), 34±2% and 30±3% of NPP, respectively, and
39±4%, 22±3% and 38±4% of Ra, respectively. Third, fine
roots accounted for 70±7% of root NPP. Fourth, Reco was
composed of 55±3% soil respiration (Rsoil), 28±2% leaf
respiration (Rleaf), 15±2% aboveground wood respiration
(Rwood) and 5±1% heterotrophic respiration of coarse woody
debris (Rh-cwd), that is, 68±3% by Ra and 32±3% by Rh.

Net ecosystem production. NEPBM agreed with NEPEC along
the range of flux measurements as indicated by the slope of
the regression NEPBM versus NEPEC (1.06; CI95%¼ 0.74–1.53,
R2¼ 0.54) (Fig. 2a). However, NEPEC was significantly larger
than NEPBM (Po0.01; mean difference 98±32 gC m� 2 y� 1;
Table 2). This trend was caused by the extratropical sites,
particularly in the boreal zone, where the mean difference was as
large as 167±44 gC m� 2 y� 1 (Table 2).

The difference between NEPEC and NEPBM was not correlated
to the elevation variability, topographical slope and leaf area
index (LAI), or to any of the other environmental and stand
variables considered (Table 3). Similarly, the difference between
NEPEC and NEPBM was not correlated to the type of BM
approach applied (that is, different methods to measure fine root
NPP, leaf NPP and Rh-soil, different quality of the allometric
relationships used to estimate wood NPP and accounting or not
for Rh-cwd; Table 3; Supplementary Fig. 2). Finally, the difference
between NEPEC and NEPBM-DS (BM-based NEP derived from
the difference in ecosystem C stocks between two points in time,
thus avoiding the use of NPP and Rh data, see Methods and
Supplementary Table 5) was also not statistically significant
(Table 2).

Ecosystem respiration. The regression between RecoBM and
RecoEC had a slope of 0.86 (CI95%¼ 0.73–1.02; R2¼ 0.87)

(Fig. 2b). RecoBM was on average 13±4% larger than RecoEC

(marginally significant at P¼ 0.061). Although the differences
between EC- and BM-based estimates of Reco did not present any
correlation with the indices of topographical complexity, LAI or
any other environmental or stand variables (Table 3), RecoBM

and RecoEC were significantly different for the boreal forests
(difference 18±7%, P¼ 0.031) but were not significantly
different for the temperate (16±6%, P¼ 0.079) and tropical
forests (5±5%, P¼ 0.39) (Table 2).
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Figure 2 | Comparison of carbon fluxes obtained from eddy-covariance or

biometric methods for worldwide forests. (a) Net ecosystem production

(NEP, n¼ 31), (b) ecosystem respiration (Reco, n¼ 25) and (c) gross

primary production (GPP, n¼ 18) from eddy-covariance (EC; x axis) and

biometric (BM; y axis) methods. Bars indicate confidence intervals which

are derived from uncertainty ranges related to biome and latitude,

constrained by a reduction factor depending on the methodology and by the

number of replicate years of measurement (see Methods). The dotted line

is the 1:1 line.
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The degree of the convergence between RecoBM and RecoEC

differed according to the type of chamber technique used to
measure Rsoil. For sites where closed static chambers or non-
steady-state non-through-flow chambers (NSNF) were used,
RecoBM and RecoEC did not differ significantly (P¼ 0.36;
Fig. 3a). On the other hand, the use of closed dynamic chambers
or non-steady-state through-flow chamber (NSF) resulted in
RecoBM significantly larger than RecoEC (20%, Po0.001; Fig. 3a).
Within the NSF group, the low level of convergence between
RecoBM and RecoEC did not differ (P¼ 0.22) when standard
systems and systems prescribing scrubbing of CO2 before the flux
measurements (for example, Li-Cor LI-6400-09 system; LI-COR
Biosciences, Lincoln, USA) were compared (Table 3). Also the

BM approach used for measuring Rleaf had an impact on the
convergence between RecoBM and RecoEC. Neglecting light
inhibition of leaf dark respiration increased the difference
between methods by about 20% (P¼ 0.041; Fig. 3b; Table 3).
Likewise, models used to scale up point measurements of Rleaf to
annual values also increased the difference between methods by
about 20% when they had a generic formulation that is, without a
site-specific parameterization (P¼ 0.043; Fig. 3c; Table 3). The
different chamber systems for measuring Rsoil affected the
convergence between RecoBM and RecoEC also when their effect
was disentangled from the effect of light inhibition and
parametrization type of leaf respiration (Supplementary Fig. 3).
On the other hand, the effect of neglecting light inhibition was

Table 3 | Relationship between the difference in forest carbon fluxes estimated from eddy-covariance and biometric methods and
site or methodological characteristics.

Variables Category (units) NEPEC–
NEPBM

RecoEC–RecoBM GPPEC–GPPBM

Difference Relative
difference

Relative
difference

P R2 P R2 P R2

Topography, environmental and stand variables
Elevation variability m 0.89 o0.01 0.82 o0.01 0.13 0.13
Topographical slope % 0.80 o0.01 0.42 0.03 0.086w 0.17
Leaf area index m2 m� 2 0.36 0.03 0.91 o0.01 0.60 0.02
Leaf type Needleleaved/broadleaved/mixed 0.27 0.04 0.24 0.07 0.44 0.04
Leaf habit Evergreen/deciduous/mixed 0.47 0.02 0.32 0.06 0.11 0.16
Fertility Low/medium/high 0.28 0.05 0.61 0.01 0.57 0.07w

Climate zone Boreal/temperate/tropical 0.16 0.07w 0.12 0.15 0.34 0.08
Mean annual precipitation mm per year 0.31 0.02w 0.25 0.06 0.34 0.06
Mean annual temperature �C 0.42 0.05w 0.13 0.10 0.22 0.09

Methodological variants
Methods to measure fine root NPP Sequential coring/ingrowth cores/

minirhizotron technique/other
0.22 0.11 NA NA 0.11 0.32

Allometric relationships to measure wood NPP Low/moderate/high quality 0.58 0.04 NA NA 0.69 0.02
Method of measuring leaf NPPz leaf fall collection/allometry 0.43 0.04 NA NA 0.85 o0.01
Chamber method to measure Rsoil NSNF/NSF NA NA 0.008** 0.34 NA NA
Scrubbing of CO2 before Rsoil measurementy Yes/no NA NA 0.22 0.09 NA NA
Methods to measure Rh-soil Root exclusion/indirectly from estimation of

root respiration/component integration/other
0.59 0.03 NA NA NA NA

Consideration of Rh-cwd Yes/no 0.16 0.07 0.84 o0.01 NA NA
Variables of models for integration of Rsoil at
annual scale

Soil temperature/soil temperature and water NA NA 0.16 0.10 NA NA

Variables of models for integration of Rleaf at
annual scale

Temperature/temperature in combination with
other

NA NA 0.13 0.11 0.32 0.07

Parameterization of models for integration of
Rleaf at annual scale

Site-specific/generic NA NA 0.043* 0.17 0.40 0.04

Variability of temperature sensitivity of Rleaf in
models for integration of Rleaf at annual scale

Yes/no NA NA 0.23 0.06 0.65 0.013

Consideration of light inhibition of leaf dark
respiration in Rleaf

Yes/no NA NA 0.041* 0.17 0.43 0.04

Consideration of leaf growth respiration in
Rleaf

Yes/no NA NA 0.94 o0.01 0.64 0.14

Consideration of wood growth respiration in
Rwood

Yes/no NA NA 0.34 0.039 0.54 0.024

Variables of models for integration of Rwood at
annual scale

Temperature/temperature in combination with
other

NA NA 0.25 0.07 0.086w 0.21

Variable used to scale up Rwood at stand level Wood volume/wood area NA NA 0.37 0.04 0.44 0.04
Separation contribution of branch and stem in
Rwood

Yes/no NA NA 0.68 o0.01 0.42 0.04

NA, not applicable; NPP, net primary production; NSF, non-steady-state through-flow chamber (closed dynamic chamber); NSNF, non-steady-state non-through-flow chamber (closed static chamber);
Rleaf, leaf respiration; Rh-cwd, heterotrophic respiration of coarse woody debris; Rh-soil, heterotrophic soil respiration; Rsoil, soil respiration; Rwood, aboveground wood respiration.
Statistics (significance level (p) and R2) for the ordinary least squares regressions between the difference in estimates of net ecosystem production (NEP), ecosystem respiration (Reco) and gross
primary production (GPP) determined with eddy-covariance (subscript EC) or biometric methods (subscript BM) and site characteristics or methodological variants of biometric methods. Difference at
0.001oPo0.01, 0.01oPo0.05 and 0.05oPo0.10 are marked with **, * and þ , respectively.
wIn case of heteroskedasticity the square of Pearson’s correlation was reported.
zOnly for sites dominated by evergreen species.
yOnly for sites with NSF system to measure Rsoil.
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stronger than the parameterization type as it was the only
one significant when the two effects were disentangled. In fact,
a two-way analysis of variance (ANOVA) accounting for Rleaf
light inhibition (yes/no) and parametrization type (site-specific/
generic), performed only for sites with NSF measurements,
showed that only light inhibition was significant (P¼ 0.035;
parametrization type: P¼ 0.23; interaction term: P¼ 0.70).

No impact was observed on the convergence between RecoBM

and RecoEC from other technical variants in measuring RecoBM.
The latter included: considering (or neglecting) Rh-cwd and the
growth respiration of Rleaf and Rwood; the differentiation of
Rwood in stem and branch respiration; the types of model drivers
(temperature or others) used for the annual estimation of Rleaf,
Rwood and Rsoil; the variability of the temperature sensitivity of
models of Rleaf, and the type of upscaling variable used for
Rwood (wood volume or wood area) (Table 3). Similarly, the
partitioning method used to derive RecoEC from NEPEC did not
have a major impact on the difference between RecoEC and
RecoBM. The use of the daytime derived Reco instead of night
time derived Reco decreased the divergence between RecoEC and
RecoBM (from 13±7% to 9±4%). However, this improvement
was not statistically significant (P¼ 0.29) because daytime derived
RecoEC did not differ significantly from night time derived
RecoEC (4±4%, daytime RecoEC4night time RecoEC; P¼ 0.64).

Gross primary production. The regression of GPPBM versus
GPPEC had a slope of 0.84 (CI95%¼ 0.70–0.99; R2¼ 0.90). The
agreement between methods was confirmed by the small and
non-significant relative difference between GPPBM and GPPEC

(5±4%). The mean difference between GPPBM and GPPEC was
small (up to 8%) and non-significant also when the analysis was
performed for the three climatic zones separately (Table 2). As for
NEP and Reco, the differences between EC- and BM-based
estimates of GPP were not related to any environmental or stand
variables (Table 3). The relationship between the GPPBM and
GPPEC difference and the topographical slope was marginally
significant, but this was due to one outlier (Supplementary Fig. 4;
the relationship was not significant at P¼ 0.19 when the outlier
was removed) and was therefore considered irrelevant. The
impact of different BM approaches to measure NPP, Rleaf and
Rwood did not have any significant impact on the difference
between GPPEC and GPPBM, except for a minor effect of the
variables used to model Rwood (P¼ 0.086) (Table 3). As for Reco,
the use of daytime flux data, instead of night time flux data, for
the calculation of GPPEC (GPPEC¼RecoECþNEPEC) improved
the difference between GPPEC and GPPBM (from 5±5% to
2±2%). However, this change was non-significant (P¼ 0.81)
mainly because daytime-data derived GPPEC did not differ than
night time-data derived GPPEC (2±2%, daytime GPPEC 4 night
time GPPEC, P¼ 0.91).

Discussion
Here we will discuss four major points: the insight that our
analysis provides on EC and on BM, the low convergence
between NEPEC and NEPBM, the EC–BM convergence for Reco
and GPP and the different degree of the methodological
convergence observed for NEP, Reco and GPP.

As no recognized reference method exists for CO2 exchange in
ecosystems, in principle, it is not possible to evaluate the
correctness of EC in measuring NEP, and in assessing Reco and
GPP. However, our study provided several indirect indications
about the general reliability of EC-based estimates of C fluxes. For
example, the lack of correlation of the difference between EC- and
BM-based estimates of C fluxes versus site topographical
complexity and LAI suggests that the standard post-processing
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procedures used to account for advective and low-frequency flows
of CO2 are effective. In fact, without the appropriate amendment,
increasing site topographical complexity and LAI should increase
the chances of advective and low-frequency flows of CO2, causing
biases in EC estimates5,6. These issues, which can be relevant for
particular sites8,18, are therefore less important at multiple-site
level. Another indication about the reliability of EC-based C
fluxes is that, estimates of RecoEC (and GPPEC) based on daytime
flux data do not differ significantly from estimates of RecoEC (and
GPPEC) based on night time flux data (as was also demonstrated
elsewhere9), and their use here does not improve the convergence
between EC and BM. This specifically supports that problems
related to low-turbulence conditions during night are in general
sufficiently amended by the flux data treatment5. Finally, the lack
of major divergence between night time estimated RecoEC and
RecoBM further reduce the probability that estimates of NEPEC

are affected by major night time overestimation, at least for
temperate and tropical forests.

Contrary to EC, no standard procedures exist for BM and the
BM studies included in our synthesis presented different
approaches in determining the production and respiration
components of the ecosystem C cycle. The methodological
variation in BM was important and allowed us to detect which
approach best converged with EC. Measurements of respiration
were particularly affected by the methodological approach.
For Rsoil (which represents the dominant component of Reco),
it is known that the NSNF chamber system significantly
underestimates Rsoil, whereas the NSF system presents smaller
inaccuracies19. This was indirectly reflected by our results. As
RecoBM was overall larger than RecoEC, the agreement of these
estimates when the NSNF system was used indicates a potential
case of error compensation, with the underestimation of
belowground respiration compensating an overestimation of
aboveground respiration (see below). On the other hand, the
latter term was not compensated when the NSF was used, with
RecoBM having larger values than RecoEC at sites making use of
NSF. Leaf respiration is also an important component of Reco
(about 30%). Our data show that, the consideration or not in BM
of light inhibition of daytime Rleaf (it was considered in only 28%
of our sites) has a major influence on the convergence between
RecoEC and RecoBM. This is striking as light inhibition of daytime
Rleaf is also neglected in standard (night time derived) estimates
of Reco and might not be correctly accounted for even in the
daytime derived Reco20. A possible explanation is that error
compensation might reduce the impact of neglecting light
inhibition of Rleaf more in EC- than BM-based estimates
(for example, the overestimation caused by not accounting for
the light inhibition of Rleaf might be compensated by missing
fluxes), and should be examined further. On the other hand, our
analysis did not show major issues related to scaling in BM-based
estimates of respiration. For instance, Rwood, the Rwood:Reco
ratio and the convergence between RecoBM and RecoEC were not
related to the scaling variable used for the wood respiration rate
(stand wood volume or wood surface area, P¼ 0.3–0.8; Table 3;
Supplementary Table 6). On the other hand, for the leaf
respiration rate that is typically scaled up using estimates of
LAI, Rleaf, the Rleaf:Reco ratio and the convergence between
RecoBM and RecoEC did not vary between needleleaved and
broadleaved species (P¼ 0.2–0.3; Table 3; Supplementary
Table 6). This is the case even though the leaf area estimates of
needle-leaved species are more prone to biases than for
broadleaved species21.

Methodological variants in measuring NPP did not show any
significant impact on the convergence between EC and BM.
For wood, flaws in allometric relationships can cause either
overestimation or underestimation of NPP22 and thus errors are

compensated when multiple sites are considered. For leaves, the
use of the litter trap method did not seem to provide different
production estimates for deciduous or evergreen stands, as they
show practically the same leaf-to-aboveground production ratio
(0.45±0.03 and 0.45±0.02, respectively; P¼ 0.99). On the other
hand, the use of litter traps or allometric relationships resulted in
different leaf-to-aboveground production ratio in evergreen
stands (0.32±0.06 and 0.45±0.02, respectively; P¼ 0.022). This
indicates that these two methodologies may provide different
estimates of leaf NPP for evergreen species but also that this
systematic difference is too small to affect the EC–BM
convergence for NEP and GPP (Table 3). For fine roots,
our results did not show the typical bias pattern associated
with the different methods to measure NPP (for example,
underestimations for ingrowth cores and overestimation for
minirhizotron23), which may be due to the overall large
uncertainty in fine root NPP estimates.

Our study generally finds good support for the reliability and
consistency of EC and BM approaches to estimate forest C fluxes
at the ecosystem level. However, the low convergence recorded
between NEPEC and NEPBM, with NEPEC significantly larger than
NEPBM for extratropical forests, is an important exception. For
temperate forests, the mean difference was 100 gC m� 2 y� 1,
which is broadly comparable to the inter-annual variability
for this biome13,17,24, characterized by NEP of about
300–400 gC m� 2 y� 1 (ref. 25). For the boreal zone, the mean
difference was about 170 gC m� 2 y� 1, which is sufficiently large
to confound the ecosystem sink-source status as NEP of boreal
forests is typically between 40 and 180 gC m� 2 y� 1 (ref. 25). For
instance, the mean NEPBM of the boreal sites in our data set was
� 60±60 gC m� 2 y� 1 (C source) whereas the mean NEPEC was
110±40 gC m� 2 y� 1 (C sink). The reason for this pattern is not
clear, as we did not observe significant relationships between the
low convergence between NEPEC and NEPBM and climatic or
environmental variables (such as mean annual temperature, mean
annual precipitation and site fertility, which are all lower in the
boreal zone). Probably, the relatively small C fluxes in boreal
forests make them more susceptible to methodological biases.

As we did not find any indications for major overestimations of
NEPEC, it is relevant to explore if the dominant BM approach
used to measure NEP is affected by any systematic under-
estimation that could explain the difference between NEPEC and
NEPBM. As the usual approach to estimate NEPBM is by
subtracting heterotrophic respiration (Rh-soil and Rh-cwd) from
NPP, underestimation of NEPBM could be caused by over-
estimation of Rh-soil and Rh-cwd or underestimation of NPP.
Rh-cwd is a relatively small flux in most sites and we have not
recorded lower agreement between NEPBM and NEPEC for sites
missing this component of the C cycle. Ecosystem Rh-soil is
particularly difficult to measure and, in our data set, four major
measurements approaches were used: root exclusion to estimate
Rh-soil (60% of sites), measuring Rroot and then subtracting it
from Rsoil (20% of sites), calculating Rh-soil from separate
incubation of all components of the soil except roots (10% of
sites) and applying a fixed Rh-soil:Rsoil ratio (10% of sites) (see
Methods for details). All these approaches have methodological
uncertainties26. However, the fact that the difference between
NEPBM and NEPEC was not affected by the four approaches to
measure Rh-soil (Table 3) and that all four approaches presented
an underestimation of NEPBM very similar to the global
difference between NEPBM and NEPEC (Supplementary Fig. 2),
point towards the conclusion that the low convergence between
NEPBM and NEPEC is more likely to be related to underestimation
of NPP than overestimation of Rh-soil. Underestimation of NPP
is indeed considered as a key potential source of bias in the BM
approach to estimate NEP (see Introduction). An analysis of the
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primary factors possibly causing NPP underestimation based on
the literature indicated that, on average, our NPP values might be
underestimated by roughly 20% because incomplete assessment
of mycorrhiza NPP and NPP related to branch turnover, which
were taken into account in only very few of the sites
(see Methods). Furthermore, additional underestimation could
have been caused by minor NPP components typically neglected
(for example, root exudation, net accumulation of non-structural
carbohydrates, herbivory consumption, production of volatile
organic compounds22), which in general contribute between
1 and 4% of NPP16,27–29. The low convergence between NEPEC

and NEPBM, when NEPBM was obtained from NPP and Rh, and
the difficulty in quantifying NPP, suggests that stock change
approaches may be a valid BM alternative to quantify NEP. For
example, even if this analysis was less robust because of the small
sample size, we discovered that when NEPBM was based on
repeated stock inventories, the difference between EC- and
BM-based estimates of NEP was not statistically significant.

Except for Reco in the boreal zone (as mentioned above),
estimates of Reco and GPP did not show significant differences
between methods. This high methodological convergence
increases the confidence in the knowledge gained using only
EC10,11 or BM12,13 and favours the integration of EC- and
BM-based estimates in synthesis studies, model-data fusion
and model development. The higher EC–BM convergence for
Reco and GPP than NEP might appear counter-intuitive at first,

as Reco and GPP are derived from NEP (for EC) or rely on
the measurements of the same component processes of NEP
(for BM). However, the different degree of EC–BM convergence
among the carbon fluxes is coherent with our results and likely
related to the small magnitude of NEP and to the partial offset of
errors of opposite direction for Reco and GPP. On the one hand,
the magnitude of NEP fluxes is only about 15–20% of the
magnitude of Reco and GPP. Therefore, NEP estimates can be
more susceptible than Reco and GPP to methodological
inaccuracies. On the other hand, it is important to realize that
high convergence of Reco and GPP is not definitive proof of lack
of systematic biases, but could be caused by error compensation.
Three examples can be provided. For GPPBM, the
underestimation of NPP (discussed above) might be
compensated for by overestimation of autotrophic respiratory
fluxes, such as Rleaf (Fig. 3b,c). For RecoBM, overestimation of
Rleaf may be compensated for by an underestimation of Rsoil
(see above). For RecoEC, the overestimation caused by
overlooking the light inhibition of Rleaf, might be offset by
missing CO2 fluxes. Overall, the compensating aspects of Reco
and GPP are not important for landscape- and large-scale
assessment of ecosystem CO2 fluxes but should nonetheless
be investigated in depth at site-level so that experimentalists
can better evaluate the measurement strategy and modelers
have the appropriate information on key ecosystem C cycle
processes.

Table 4 | Risk of lack of convergence between estimates of forest carbon fluxes obtained from eddy-covariance and biometric
methods according to site and methodological characteristics.

Flux Variables

Overall
NEP High
Reco Moderate
GPP Low

Climate zone
Boreal Temperate Tropical

NEP High High Low
Reco High Moderate Low
GPP Low Low Low

Canopy features
Leaf type* Leaf habitw Leaf area index

NEP Low Low Low
Reco Low Low Low
GPP Low Low Low

Topography and soil characteristics
Altitude variability Slope Fertility

NEP Low Low Low
Reco Low Low Low
GPP Low Moderate Low

Compartment measured with biometric methods
Leaves Wood Soil

NEP Low Moderatez Moderatey

Reco High|| Low Highz

GPP Moderate|| Moderatez Moderatey

The risk of lack of convergence between eddy-covariance (EC) and biometric methods (BM) estimates of net ecosystem production (NEP), ecosystem respiration (Reco) and gross primary production
(GPP) for forests is reported according to climatic zone, canopy features, site (topography and soil) characteristics, and the main ecosystem compartments measured with BM, and expressed in three
levels: low (non-significant difference between BM and EC estimates and/or lack of systematic biases), moderate (difference between the BM and EC estimates at 0.05oPo0.10 and/or potential of
systematic biases) and high (significant difference at Po0.05 between the BM and EC estimates and/or systematic biases).
*Needleleaved, broadleaved or mixed.
wEvergreen, deciduous or mixed.
zNot considering branch turnover in estimates of net primary production (but with an adequate assessment of the other components of the wood production, see Methods).
yNot considering mycorrhizal production (but with an adequate assessment of root production, see Methods).
||Not considering light inhibition of leaf dark respiration.
zUse of lower quality chamber system to measure soil respiration.
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In conclusion, our study has shown four key findings.
First, forest NEP estimates obtained with BM and EC
differ significantly, particularly for the boreal zone, where the
source/sink status is sensitive to the measurement technique.
Second, BM and EC-based estimates of Reco and GPP are
globally comparable for forest ecosystems but error compensation
is likely to play a role in the convergence. Third, there are indirect
but multiple indications that the potential biases associated with
EC are, in aggregate, sufficiently amended by post-processing of
the data. Fourth, BM approaches underestimating NPP and
neglecting light inhibition of leaf dark respiration show less
convergence with EC estimates. Our results also provide manifold
information with important practical implications, as they
identify in which situations forest C fluxes can be measured with
both EC and BM methodologies (with the choice of the method
depending on factors such as scientific objectives, logistics, local
researcher capacity and availability of labour) and it is safe to
integrate EC- and BM-based C flux estimates in synthesis studies
or model-data fusion (Table 4). On the other hand, we report the
mean values of difference against which the discrepancy between
EC and BM can be tested in cases of low convergence
(for example, for boreal forests) and which methodological
aspects need to be taken most urgently into account to improve
the convergence between EC and BM. Finally, we make also
available the uniform forest C cycle data set that we compiled
using quality-checked EC and BM data. All these evidences,
elucidations and tools will substantially improve our ability to
assess and simulate the CO2 exchange of terrestrial ecosystems.

Methods
Overview study data set. We constructed a data set of NEP, Reco and GPP
obtained from BM and EC methodologies. The data set contains annual flux
estimates, uncertainties, key information about the measurement techniques and
ancillary data on environmental and stand variables. Data were retrieved from
ISI-Web literature and existing databases such as the global database of forest C
cycle25, FLUXNET30 and the European Flux Database Cluster31.

EC data are consistent as calculated through standard procedures, quality-check
and data processing5. However, the NEP partitioning methods used to produce
Reco and GPP can vary substantially and we classified them into three categories:
methods based on night time data following Reichstein et al.10 or very similar
algorithms32–34, methods based on daytime data following Lasslop et al.9 and
calculation of Reco from sundown respiration following van Gorsel et al.35. As the
latter method was only applied at two sites, the analyses on the partitioning method
were actually focused on the night time and daytime methods only. Contrary to
EC, no standard procedures exist for BM and data in the literature are highly
heterogeneous, reflecting their diverse scope (for example, assessing the impact of a
manipulative experiment, stand level estimates, regional assessments), local
researcher capacity and practical reasons (for example, logistics, availability of
labour). To obtain a uniform and quality-checked BM data set, we performed three
operations. First, we retrieved details on BM for each site and classified them in
multiple categories of methodological approach and up-scaling methods. Second,
we considered in the analysis only sites fulfilling a pre-defined set of data quality
criteria. Third, we related the data uncertainty to the technique adopted. Full details
about the BM data set and its construction are reported below in four sections:
annual estimates of production and respiration in BM data set, variables of BM
data set for estimation of flux uncertainty, methodological variants of BM
approach, and NEP biometric data from stock inventories.

The key environmental and stand variables used in the analysis are two indices
of topographical complexity (that is, elevation variability and topographical slope)
and LAI, which are thought to be related to bias in the EC-based estimates of C
fluxes (see Introduction). The indices of topographical complexity were measured
within a 2,430� 2,430 m quadrat, centered at the EC tower, obtained from NASA
ASTER DEM data36. The elevation variability was the standard deviation of the
elevation of 729 pixels composing the quadrat. The topographical slope was derived
from the elevation and distance of the highest and lowest pixels within the quadrat.
The LAI was derived from the literature. The other variables tested for possible
systematic influences on EC and BM include leaf characteristics, climatic features
and site fertility. Leaf characteristics refer to leaf habit (evergreen, deciduous or
mixed) and leaf type (needleleaved, broadleaved or mixed), which might affect the
measurement of LAI21 and, consequently, the upscaling of leaf measurements to
the stand level. Climatic features comprise climate zone (boreal, temperate or
tropical), mean annual temperature and mean annual precipitation, which
might affect both the instrument performance and the post-processing of the
data (which involve different type of modelling and extrapolations)5,37. Site fertility

was considered because it was recently found as the key driver of the CO2 exchange
in forests38. It was classified in three categories (infertile, moderately fertile or
fertile) based on soil type, physicochemical soil properties, and human
amendments/degradation29,38,39. All the environmental and stand variables were
derived from the literature or other databases and are reported in Supplementary
Table 4 and Supplementary Data 1.

Annual estimates of production and respiration in BM data set. The main
component processes of the ecosystem C cycle considered are: NPP, aboveground
Ra, Rsoil and its components (root autotrophic respiration, Rroot and Rh-soil) and
Rh-cwd:

aboveground Ra ¼ Rleaf þRwood ð1Þ

Rsoil ¼ RrootþRh-soil ð2Þ
These variables are combined to obtain NEP, Reco and GPP:

NEP ¼ NPP� Rh ¼ NPP� Rh-soil� Rh-cwd ð3Þ

Reco ¼ RaþRh ¼ aboveground RaþRsoilþRh�cwd ð4Þ

GPP ¼ NPPþRa ¼ NPPþ aboveground RaþRroot ð5Þ
A full list of the variables (for example, NPP, Ra) for each ecosystem component
(for example, foliage, wood, fine roots, soil) is reported in Supplementary Table 7.
The methods used to measure these variables are briefly reported below, whereas
extended methodological information for each site (for example, set-ups and
measuring protocols, methods used to integrate point measurements to annual
scale, methods to scale up tree level data to the stand level) is reported in
Supplementary Methods. For sites with multiple-years data of NEP, Reco and GPP
but with a combination of direct and indirect measurements, only years with direct
measurements were considered.

Net primary production. Sites were selected when at least the three major
components of the ecosystem production were measured: wood NPP, foliage NPP
and fine root NPP. Wood NPP (stem, branches and coarse roots) was obtained as
the increment in wood standing biomass from consecutive tree size (typically
diameter) surveys and allometric relationships between tree size and wood standing
biomass. Detailed information about the allometric relationships used at each site is
reported in Supplementary Table 8. The quality of the relationships was classified
into three categories according to their degree of species-specificity (species-specific
versus generic), their geographical origin (site-specific versus regional) and their
degree of flexibility (full dependency on tree size versus partial use of fixed
productivity ratios). The categories are: high quality, for species- and site-specific
relationships without fixed productivity ratios; moderately quality, for species-
specific relationships without fixed productivity ratios but not site-specific, and low
quality, for generic and/or not site-specific relationships employing also fixed
productivity ratios. Foliage NPP was typically obtained from leaf litter collected
with litter traps (for both deciduous and evergreen species) or from tree size
surveys and allometric relationships between tree size and current-year leaf
biomass (for evergreen species). Fine root NPP was measured with different
methods, which can be classified into three main categories: sequential coring40

(for 26% of our sites), minirhizotron-based technique41 (23% of sites) and
ingrowth cores42 (19% of sites). In addition, we aggregated the other techniques
(for example, process-based modelling43, empirical modelling44, mass balance
approach45) in a fourth category named other methods. For a comparison across
methods see Milchunas23. Only sites with site-specific estimates of wood, foliage
and fine root NPP were included. Therefore, sites with fine root NPP derived from
aboveground NPP, generic algorithms or global models were not considered. The
majority of the sites (70%) meeting the requirement on wood, foliage and fine root
NPP also presented understory NPP (generally measured with a combination of
allometric relationships between plant dimension and biomass and/or harvest
techniques17). NPP due to branch turnover (from branch fall surveys),
reproductive organs (from litter traps) and herbivory (from leaf area or biomass
consumption) was considered in 30–40% of the sites. NPP due to production of
volatile organic compounds and mycorrhizae production was considered in only
10% of the sites.

Aboveground respiration. To be included in our quality-checked BM data set,
sites needed to comprise at least site-specific estimates of Rleaf and Rwood, fully
independent to EC data. Rleaf was typically measured with chambers and infrared
gas analyser, in situ, on canopy leaves37,46, or in vitro, on leaves of freshly cut
branches42,47. Rwood was always measured with chambers and infrared gas
analyser. Measurements were typically performed during various occasions in the
growing and dormant season and integrated at annual level by using empirical
models that related respiration to temperature, water status or other environmental
variables37. Data were scaled up at stand level using LAI or leaf biomass, for Rleaf,
and sapwood volume or area, for Rwood. About 60% of the sites presented also
measurements of understory respiration (Ru; absence of Ru data was however not
considered as a criterion for excluding the site). Measurement methods of Ru were
similar to the ones for Rleaf and Rwood, and, often, Ru data were not presented
separately but included into Rleaf and Rwood.

Belowground respiration. Rsoil was needed for a site to be included in our
RecoBM data set, whereas partitioning into Rroot and Rh-soil was needed for
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inclusion in the data set of GPPBM and NEPBM, respectively (Supplementary
Table 7). Rsoil was measured by using various soil chamber systems which fall into
three major categories: closed static chambers or NSNF, closed dynamic chambers
or NSF, and open dynamic chambers or steady-state through-flow chamber19.
However, because the latter system was only used in two of our sites, we did not
consider this system in our statistical analysis. On the other hand, for the NSF
technique, we further classified the sites into two groups, according to whether the
system prescribed scrubbing of CO2 before the flux measurements (for example,
Li-Cor LI-6400-09 system; LI-COR Biosciences, Lincoln, USA) or not19.
Measurements not performed continuously were integrated at annual scale using
empirical models relating soil respiration to temperature and/or soil water status.
Various methods were applied to partition Rsoil into Rroot and Rh-soil. We
grouped them into four categories: root exclusion methods (used in 57% of the
sites), that directly measure Rh-soil in situ and indirectly derive Rroot from
equation (2); estimation of Rroot (20% of sites), both in situ (using root chambers),
in vitro (using excised roots) or using models (process-based or empirical models)
and indirectly deriving Rh-soil from equation 2; component integration (10% of
sites), that prescribes the estimation of Rh-soil from the respiration of all
components of the soil (for example, litter, mineral soil layers and so on)
separately, often in vitro in the laboratory, and, as for the exclusion methods,
indirectly estimates Rroot (equation (2)), and other methods, which mainly assume
a fixed ratio between Rroot and Rh-soil26. See Hanson et al.26 for more details on
all methods to partition Rsoil into Rroot and Rh-soil.

Other respiratory components. Decomposition of coarse woody debris
(Rh-cwd) can be a significant part of the total ecosystem respiration. Rh-cwd was
therefore considered when reported (for 65% of the sites) but sites missing it were
not excluded. Rh-cwd was typically derived from surveys of standing dead wood
and estimates of decays rates, or, in a minority of cases, from chamber
measurements of CO2 exchange or wood decomposition from successive surveys.

Variables of BM data set for estimation of flux uncertainty. Data uncertainty of
NEP, Reco and GPP was calculated following the method described below. The
data required for the estimation of the flux uncertainty are: the site latitude, the
number of replicated years of measurement, and a general label of data quality.
The latter has two levels: high quality data, for sites with only site-specific
measurements, or fair quality data, for sites with measurements comprising also
not site-specific relationships and/or models.

Methodological variants of BM approach. BM data were often obtained at
different sites with different BM techniques or data processing. Therefore,
we reported in the BM data set the employed approach for each site and measured
variable. This was done to analyse the impact of the BM methodology on the
convergence between EC and BM fluxes. In particular, we considered 17
methodological variants of the BM technique (Table 3). For this analysis, we paid
more attention to variables that had a large numerical impact on the stand C cycle
(for example, Rsoil, fine root NPP, Rleaf, Rh-soil), whereas we paid less attention to
variables that had a small numerical impact (for example, Rwood, Rh-cwd).

NEP biometric data from stock inventories. NEPBM is not only obtainable from
measurements of production and respiration (equation (3)) but also derivable from
the difference in ecosystem C stocks between two points in time12. NEPBM

estimates obtained with the latter approach are indicated here as NEPBM-DS. Ideally,
C stocks should comprise vegetation, necromass and soil, with correction for lateral
C losses (for example, harvests, leaching of dissolved organic carbon)48. In practice,
complete C stock inventories are seldom done. Therefore, we included in the
NEPBM-DS data set all sites in the literature (n¼ 7) with the repeated assessment of
at least the two major ecosystem C stocks that is, wood and soil.

Data uncertainty. As flux uncertainty was available only for a minority of
sites (and its calculation method was highly inconsistent among studies), the
uncertainties in fluxes were approximated uniformly following Luyssaert et al.25

These authors proposed that the flux uncertainty for a site (s) can be approximated
by considering three elements. First, the typical range of the flux value for the site
biome (p) set as the maximal potential uncertainty range. Second, a reduction
factor (RF), depending on the measuring methodology, that reduces the maximal
potential uncertainty range (for example, a precise method would reduce the
uncertainty interval more than an imprecise method). Third, the number
of measurement years (l), with more replicate-years reducing the uncertainty
interval. Thus:

s ¼ p�RF
ffiffi

l
p ð6Þ

For example, to determine the NEPEC uncertainty of a temperate forest with two
years of measurements, the Luyssaert et al.’s approach considers that NEP of
temperate forests typically ranges between � 100 and 600 gC m� 2 y� 1 (thus
s¼ p¼±350 gC m� 2 y� 1), that EC is precise and reduces the uncertainty to 30%
of the baseline value (RF¼ 0.3, thus s¼±105 gC m� 2 y� 1) and that the presence
of two measurement years further reduces the uncertainty to s¼±74 gC m� 2

y� 1. In general, according to this method, p of NEP is assumed to be 350 gC m� 2

y� 1 for extratropical forests and 700 gC m� 2 y� 1 for tropical forests25, p of Reco

and GPP depends on latitude and varies from 500 to 1000 gC m� 2 y� 1 (ref. 25),
and that RF of BM is 0.3, as for EC, for sites with high quality data and 0.6 for sites
with fair quality data (see above).

The adopted approach produces uncertainty intervals comparable to the
directly estimated uncertainty for EC25. Here, we observed that good agreement
was achieved also for the BM fluxes of extratropical forests but that relevant
mismatches were detected for Reco and GPP of tropical sites where the Luyssaert
et al.’s approach underestimated the measured uncertainty by 60–70%
(Supplementary Table 9). We considered this important discrepancy not crucial for
our analysis because we had only four tropical sites and repetition of the analysis
with corrected uncertainty values of tropical sites (to match the directly estimated
uncertainty) did not change the main results (data not shown).

Data analysis. The data were analysed in four steps, which are described below.
For each case, note that the comparison of the EC and BM fluxes was performed
for sites with data referring to the same vegetation cover (or footprint) and to the
same period or with minor temporal mismatches (for example, BM fluxes available
for a three-year period and EC fluxes for a 2-year period) generally considered
suitable for the EC and BM comparison by the original investigators (for 74%
of the sites the BM and EC data were from published EC–BM comparison at the
site-level).

Agreement between EC and BM. We obtained a first indication of the
agreement between EC- and BM-data by calculating the regression of BM
versus EC estimates along the entire range of flux measurements. Major-axis
regressions were used because both variables had error terms of similar
magnitude49. Agreement was inferred from the slope of the regression line and the
correlation indicated by R2. In addition, for each flux and climatic zone, the
agreement between the EC and BM estimates was more stringently tested by a
paired t-test (in case the differences between pairs were normally distributed
according to Shapiro–Wilks’ test) or Wilcoxon signed-rank test (in case the
differences between pairs were not normally distributed). The same approach was
used to compare NEPEC and NEPBM-DS (see above).

Impact of environmental and stand variables on the EC and BM convergence.
We tested whether the difference between the EC- and BM-based estimates was
systematically related to elevation variability and topographical slope (indices of
topographical complexity), LAI, leaf habit and leaf type (canopy characteristics),
climate zone, mean annual temperature and mean annual precipitation (climate
variables) and site fertility (see above). The tests comprised univariate analyses
performed regressing (with an ordinary least squares regression) the difference
between the EC- and BM-based estimates and each variable, separately. To fully
exploit the information available for each site, the impact of flux data uncertainty
was added to the analysis by using the inverse of the flux uncertainty as weighing
factor among sites (thus giving lower weight to sites with higher uncertainty on the
estimates). Each analysis met the normality of residuals (tested with Shapiro-Wilks’
test) and the assumption of homoskedasticity (tested with Breusch-Pagan test),
except in a few cases for which the White method (for heteroskedasticity
correction) was used instead50.

Impact of different methodological variants on the convergence between EC
and BM. The impact of different methodological approaches on the convergence
between EC and BM-based estimates was tested as above with ordinary least
squares regressions weighted by the inverse of the flux uncertainty. These
univariate analyses served well for the purpose of the study, as preliminary analyses
showed typically no relevant two-term interactions. The few significant (Po0.05)
two-terms interactions (1 out 55 cases for GPP, 5 out of 66 for Reco and 1 out of 6
for NEP) did not have logical meaning but were related to the small sample size,
that is, singularities. The only exception was represented by a significant interaction
between soil respiration chamber type and accounting for light inhibition of leaf
respiration for Reco, which was considered in the data analysis (see Results). For
BM, the methodological variants were 17 (Table 3). For EC, the only
methodological variant was the NEP partitioning method which was of two types
(see above).

Analysis of NPP data. NPP is a key component for the determination of NEPBM

and GPPBM. Five methodological flaws can typically have a significant (410%)
and unidirectional (underestimation) impact on NPP estimates in forests22: not
accounting tree mortality, assuming life span of fine roots to be 1 year, coarse
measurements of leaf NPP in tropical forests, not measuring mycorrhizal NPP and
rhizodeposition, and not correcting for NPP related to branch turnover. The first
three cases are less relevant in our data set as: site tree mortality was normally
assessed, fine root production was estimated for each site and tropical sites are few
in our data set and their leaf NPP was quantified accurately. On the other hand, we
detected than only three and six sites (out of 31) took into account mycorrhizal
NPP and NPP related to branch turnover, respectively. The impact of these missing
terms was estimated by gap-filling the original NPP values using the average values
of branch turnover related NPP from our data set (which was equivalent to 22% of
aboveground wood NPP or 8% of total NPP, n¼ 6; Supplementary Table 2) and of
mycorrhizal NPP from the literature (which was equivalent to 14% of total NPP,
n¼ 6, and in agreement with culture studies51; Supplementary Table 10). The gap-
filled NPP estimates were on average 20% larger than the original NPP estimates.

Overall, the analyses were performed for all fluxes, that is, NEP (NEPBM versus
NEPEC), Reco (RecoBM versus RecoEC) and GPP (GPPBM versus GPPEC). For Reco
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and GPP, to ensure that the impact of each given site was independent on the flux
magnitude, the analyses were performed using the relative difference between the
EC- and BM-based flux estimates (for example, for GPP: (GPPBM – GPPEC)/
((GPPEC þ GPPBM)/2). For NEP, the latter approach was impeded by the presence
of both positive and negative values. We intentionally retained outliers in our
analyses because they could represent cases with high discrepancy between the
methodologies and thus of relevance for our scope. All analyses were performed
within the R platform52.

Data availability. The data that support the findings of this study are included in
Supplementary Data 1. Data are from the literature and public databases. Details
about the data and the data sources are reported in Supplementary Tables 1-5.
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