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To understand the impacts of extreme climate events, it is first necessary to

understand the spatio-temporal characteristics of the event. Gridded climate

products are frequently used to describe climate patterns but have been

shown to perform poorly over data-sparse regions such as tropical forests.

Often, they are uncritically employed in a wide range of studies linking tro-

pical forest processes to large-scale climate variability. Here, we conduct an

inter-comparison and assessment of near-surface air temperature fields sup-

plied by four state-of-the-art reanalysis products, along with precipitation

estimates supplied by four merged satellite-gauge rainfall products. Firstly,

spatio-temporal patterns of temperature and precipitation anomalies during

the 2015–2016 El Niño are shown for each product to characterize the impact

of the El Niño on the tropical forest biomes of Equatorial Africa, Southeast

Asia and South America. Using meteorological station data, a two-stage

assessment is then conducted to determine which products most reliably

model tropical climates during the 2015–2016 El Niño, and which perform

best over the longer-term satellite observation period (1980–2016). Results

suggest that eastern Amazonia, parts of the Congo Basin and mainland

Southeast Asia all experienced significant monthly mean temperature

anomalies during the El Niño, while northeastern Amazonia, eastern

Borneo and southern New Guinea experienced significant precipitation def-

icits. Our results suggest ERA-Interim and MERRA2 are the most reliable air

temperature datasets, while TRMM 3B42 V7 and CHIRPS v2.0 are the

best-performing rainfall datasets.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
In recent decades, a multitude of global and quasi-global gridded climate pro-

ducts has been produced by the world’s major meteorological organizations

(e.g. European Centre for Medium-range Weather Forecasts, ECMWF; National

Oceanic and Atmospheric Administration, NOAA; National Aeronautics and

Space Administration, NASA) and has found wide use in the scientific research

community. These climate products, which include atmospheric retrospective

analysis (reanalysis) models and satellite-based remote sensing products, com-

bine millions of irregularly distributed satellite and on-the-ground observations

from multiple observing networks, and, through data assimilation algorithms

(and climate models in the case of reanalysis) produce physically coherent,

spatio-temporally complete gridded climate datasets [1,2]. For many gridded

climate products, tropical forest areas present the greatest challenge as they

are regions where on-the-ground observations are sparse and land-atmosphere

feedbacks are complex and fine-scale. Despite ingesting similar observations

into their assimilation algorithms, significant differences in the spatio-temporal

patterns of climate trends have been identified between different climate
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datasets, and where assessment has been undertaken, many

of the products show poor correlations with on-the-ground

observations [3–5]. This is particularly the case in data

sparse but functionally important regions such as the tropical

forest biome. Regardless of these known concerns, these cli-

mate products are often uncritically employed in

investigations linking tropical forest processes with major cli-

mate modes of variability such as the El Niño Southern

Oscillation (ENSO) [6–9]. Thus, there is an imperative to dis-

cern which climate products are most reliable over tropical

forests to ensure findings are robust against the uncertainties

introduced by the limitations of these products.

Here, we present an inter-comparison and assessment of

the near-surface air temperature fields supplied by four

state-of-the-art reanalysis products, and the precipitation esti-

mates supplied by four merged satellite-gauge rainfall

products. Our aim is to determine which of the most

widely used climate products reliably model air temperature

and rainfall over tropical forests at the continental scale, both

during the most recent major El Niño event, and over the

entire satellite observation period from 1980 to 2016. First,

the spatio-temporal patterns of temperature and precipitation

anomalies during the 2015–2016 El Niño are shown for each

product, both to characterize where and when the most

recent El Niño impacted upon the tropical biome, and to

highlight the discrepancies and similarities between pro-

ducts. We then conduct a two-stage assessment using

station data compiled from across the three tropical conti-

nents. The first stage of assessment uses station data from

the 2015–2016 El Niño period to determine which products

most accurately modelled the latest El Niño. In the second

assessment stage, station data collected over the period

1980–2016 are used to determine which products performed

most reliably over this extended period.
2. Data and methods
(a) Temperature and precipitation datasets
For the near-surface (2-m) temperature inter-comparison and

assessment, four state-of the-art reanalysis datasets were

used: ERA-Interim, produced by ECMWF [10]; Climate Fore-

cast System Reanalysis (CFSR), produced by National

Centers for Environmental Prediction (NCEP) [11,12];

Modern-Era Retrospective Analysis 2 (MERRA2), produced

by NASA [13]; and the Japanese 55-year Reanalysis (JRA55)

produced by the Japanese Meteorological Agency (JMA)

[14,15]. Specifications of the four models are included in the

electronic supplementary material, table S1. Reanalysis

models use a forecast model with data assimilation schemes

for both conventional and satellite weather observations to

produce an estimate of the past state of the atmosphere

[16]. Forecast models are used to propagate information on

the atmosphere forward in time from previous analyses,

and an assimilation scheme uses the vast array of obser-

vations to blend the input observations with the results of

the forecast model. The output of the assimilation scheme is

then used as the initialization data for the next forecast [1].

Reanalysis products are subject to a combination of errors

and uncertainties that arise due to gaps and errors in obser-

vations, shortcomings in the model physics, shortcomings

in the assimilation algorithms, computational limitations

resulting in coarse spatial resolutions relative to
meteorological phenomena and the non-stationarity of

observing systems that introduce time-dependent biases [2,5].

Precipitation estimates from reanalysis products are

known to possess significant biases over the tropics [4,5,17]

and are normally not used operationally. Satellite-based rain-

fall estimates are generally considered to produce better

estimates of historical rainfall. We examined them here in

place of reanalysis precipitation fields. Satellite-based rainfall

estimates are based on observations from either thermal

infrared (TIR) bands or passive microwave (PMW) sensors.

Although satellite-based rainfall estimates provide high-

resolution spatio-temporal coverage of regions that otherwise

lack reliable rain gauges, they suffer from several limitations

that stem from their reliance on remotely sensed spectral data

rather than observations of rainfall itself [18–20]. To over-

come these limitations, several new rainfall datasets merge

TIR and PMW observations with in situ gauge measurements

to produce a best-estimate rainfall product, and these pro-

ducts have been shown to produce more accurate results

than the satellite-only versions [3,20–22]. Four merged satel-

lite-gauge products are evaluated here: the Tropical Rainfall

Measuring Mission (TRMM) 3B42 V7 Daily accumulated

rainfall product [23]; the Climate Hazards Infrared Precipi-

tation with Stations (CHIRPS) V2.0 dataset produced by the

U.S. Geological Survey and the Climate Hazards Group

(CHG) at the University of California, Irvine [24]; the Precipi-

tation Estimation from Remotely Sensed Information using

Artificial Neural Networks Climate Data Record (PER-

SIANN-CDR) produced by the Centre for Hydrometeorology

and Remote Sensing at the University of California [25];

and the Climate Prediction Centres (CPC) Merged Analysis

of Precipitation (CMAP) dataset produced by NOAA/

NCEP [26]. Details of these products are also included in

the electronic supplementary material, table S1.
(b) Pantropical temperature and precipitation anomalies
The 2015–2016 El Niño was probably the most significant cli-

mate event in the tropics since the 1997–1998 El Niño, and

possibly since much earlier. Mean and maximum tempera-

ture and precipitation anomalies during the 2015–2016

peak El Niño period are quantified and mapped here to pro-

vide an account of the spatio-temporal impact of the latest El

Niño on the tropical biosphere. The peak El Niño period is

defined throughout this paper as occurring from January

2015 to May 2016, which corresponds to the peak sea surface

temperatures (SST) anomalies in the Niño 3.4 region [27].

Monthly 2 m air temperature anomalies were calculated

against a 1980–2016 baseline on the native resolution of

each reanalysis product. The mean and maximum tempera-

ture anomalies during the peak 2015–2016 El Niño period

were then calculated on a per-pixel basis. Each product was

then bilinearly interpolated to a common 0.58 grid to facilitate

comparison between products. The commonly gridded temp-

erature anomaly maps were masked to include only lowland

evergreen tropical forest using a modified version of the

Hansen Global Forest Change (GFC) v1.4 product [28],

remapped via a nearest neighbour method to match the res-

olution of the climate datasets. Regions of tropical forest in

the GFC occurring 1000 m.a.s.l. were removed, and the

mask was clipped to 218 north and south of the equator. Lim-

iting the extent of tropical forest to include only the lowlands

regions partly eliminates the complication of assessing

http://rstb.royalsocietypublishing.org/
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relatively coarse spatial resolution climate products in regions

of complex topography where large biases can occur due to

the steep temperature gradients of mountainous terrain.

The extent of the tropical forest mask used in the analysis is

presented in electronic supplementary material, figure S1.

Monthly total precipitation datasets underwent a similar

set of pre-processing operations, except the datasets were

remapped to a common 0.258 grid (excluding CMAP whose

2.58 resolution was deemed too coarse to resample down to

0.258) and the reference baseline for calculating anomalies

was set at 1998–2016 to account for the shorter time-span

of the TRMM dataset.

Time-series of monthly mean temperature anomalies and

monthly total precipitation anomalies for each tropical conti-

nent were produced by calculating a simple average of all

cells within each continent at each time-step. The continen-

tally averaged time-series presented in the results extend

from January 2014 to December 2016 to cover the full timeline

of positive SST anomalies.
0170406
(c) Performance evaluation using station observations
To go beyond an inter-comparison between climate datasets

and begin to evaluate which products reliably model both

the most recent El Niño event and the longer climate record

in the tropics, a point-to-pixel station assessment was con-

ducted. Several sources of error are associated with this

method of assessment. Station air temperature data are

point measurements and therefore not necessarily representa-

tive of the grid boxes in a model output where values for a

grid represent the grid average. Additionally, station temp-

erature measurements are subject to measurement errors,

microclimatology effects and inhomogeneities from changes

to measuring procedures [16,29]. Rain gauge observations

are subject to the same errors as temperature observations

but contain additional sources of error from the systematic

under-sampling of rainfall by gauges owing to wind-field

deformation above the gauge opening, evaporation and wet-

ting on the internal walls [30,31]. The use of point data to

validate gridded climate products is therefore not straight-

forward, and some systematic variation between the station

observations and pixel estimates should be expected [22].

CMAP is not included in the station assessment as it was

impractical to compare point observations to such a large

area (each cell in CMAP is approximately 62 500 km2) and

it was not possible to aggregate multiple stations within a

pixel due to non-overlapping records from adjacent stations.

Rainfall gauge observations and near-surface air tempera-

ture observations were compiled from the Global Historical

Climatology Network Monthly (GHCN-M) database [32]

(https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly), the

Climate Research Unit Temperature V. 4 (CRUTEM4) database

[33] (https://crudata.uea.ac.uk/cru/data/temperature), the

CRU TS v 4.01 database [34] (https://crudata.uea.ac.uk/

cru/data/hrg/cru_ts_4.01/), the UK Met Office Integrated

Data Archive System (MIDAS) database (http://catalogue.

ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0) and

the Global Ecosystem Monitoring (GEM) Network (http://

gem.tropicalforests.ox.ac.uk/). Each of these datasets is

subject to a range of quality control measures that are con-

ducted by each of the institutions listed. The meteorological

station records over tropical forests are notoriously patchy so

all data available within the time period in question were
retained regardless of the continuity of the record. Over Ama-

zonia and Southeast Asia, the shortest station record contained

12 months of climate data over the 1980–2016 period, while

over Africa, the shortest station record contained only three

months of climate data over the same interval. Generally, the

number of observations included in the statistical analysis is

sufficient to overwhelm any seasonal bias introduced through

the inclusion of partial length time-series. This is not the case,

however, for the assessment of rainfall over Africa during the

2015–2016 El Niño, which only included 23 observations.

Hence, the results for the station analysis over Africa during

the 2015–2016 El Niño should be viewed with caution.

Locations of the stations used in this analysis are shown in

the electronic supplementary material, figure S1, and table 2

through 5 show the number of station observations used for

each assessment.

The model assessment process used the following statisti-

cal metrics to evaluate the quality of each climate dataset: the

Coefficient of Determination (R2), Mean Absolute Error

(MAE), the refined Index of Agreement (dr) [35] and the rela-

tive proportion of systematic to unsystematic Mean-Squared

Error (MSEs/MSE and MSEu/MSE). Some assert it is better

to rely on absolute measures of error rather than squared

differences when evaluating models; however, computing

MSE allows for deducing the type of error (systematic or

random) [36]. dr indicates the error of the model predictions

relative to the observed deviations about the observed

mean. It varies between 21.0 and 1.0, where a dr equal to 1

would indicate perfect agreement between observed and pre-

dicted values. A dr of 0.5 indicates the sum of the errors is half

the sum of the perfect-model-deviation and observed-

deviation magnitudes [35]. A negative dr indicates the sum

of the errors is larger than those from using the observed

mean. dr is used here in place of Willmott, Ackleson [36]’s

original index of agreement as the refined index is less sensi-

tive to large outliers and is also more useful at differentiating

models that both show close agreement [35]. Use of these

statistics allows for assessing the closeness of agreement

between on-the-ground observations and the estimates gen-

erated by the rainfall and temperature products, the

magnitude and direction of deviations between observations

and model estimates, and the type of error these estimates

produce. The following equations define each of the statistical

metrics employed:

R2 ¼
Pn

i¼1 (Oi � �O)ðSi � SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (Oi � �O)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (Si � �S)
2

q
2
64

3
75, ð2:1Þ

MAE ¼ n�1
Xn

i¼1

jOi � Sij, ð2:2Þ

MSEs ¼ n�1
Xn

i¼1

(Ŝi �Oi)
2, ð2:3Þ

MSEu ¼ n�1
Xn

i¼1

(Si � Ŝi)
2 ð2:4Þ

and

dr ¼
1�

Pn
i¼1 jSi �Oij

2
Pn

i¼1 jOi � �Oj
, if

Xn

i¼1

jSi �Oij � 2
Xn

i¼1

jOi � �Oj

2
Pn

i¼1 jOi � �OjPn
i¼1 jSi �Oij

� 1 , if
Xn

i¼1

jSi �Oij. 2
Xn

i¼1

jOi � �Oij

8>>>><
>>>>:

ð2:5Þ
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where Oi is the observed monthly mean temperature or

monthly total rainfall, Si is the simulated temperature or rain-

fall from the corresponding month, �O is the observed

climatological mean and Ŝi is the predicted temperature or

rainfall as given by the least square regression model,

Ŝi ¼ aþ bSi between S and O.
 ypublishing.org
Phil.Trans.R.Soc.B

373:20170406
3. Results
(a) Climate anomalies during the 2015 – 2016 El Niño
(i) Temperature
Across all three tropical continents, the reanalysis tempera-

ture datasets show little agreement on the magnitude and

spatial distribution of temperature anomalies during the

2015–2016 El Niño. Figure 1a,b shows the spatial distribution

of the mean and maximum near-surface temperature

anomalies for each of the four reanalysis products during

the 2015–2016 El Niño, respectively. Figure 1c shows the con-

tinent-averaged time-series of these anomalies, and table 1

displays the zonal mean statistics for the plots in figure 1a,b.

Averaged across all of Amazonia, MERRA2 showed the

largest positive temperature anomaly with mean monthly

temperatures 1.138C above average, with large regions of

eastern Amazonia reaching mean temperature anomalies

throughout the peak El Niño period of 1.5–2.58C. Maximum

temperatures anomalies in MERRA2 reach 3.5–5.58C over

wide regions of the basin (these are anomalies based on

monthly mean temperatures). All the reanalysis products

show a positive temperature anomaly over Amazonia, with

MERRA2 and ERA-Interim (0.878C) presenting significantly

larger and more widespread anomalies than JRA55 (0.478C)

and CFSR (0.338C). Peak temperature anomalies over Amazo-

nia were a prolonged event that occurred from September

2015 until January 2016, followed by a secondary smaller

peak in mid-2016 (figure 1c).

Over Africa, there is essentially no agreement between the

reanalysis products on the spatial pattern of temperature

anomalies. ERA-Interim shows a continent-wide mean temp-

erature anomaly of 0.668C, with some areas of the northeast

Congo and coastal west Africa recording a mean anomaly

higher than 18C. Mean temperature anomalies over Africa

in MERRA2 (0.398C) and JRA55 (0.408C) were less uniform

and less severe than in ERA-Interim, and maximum tempera-

ture anomalies were located over the central Congo Basin

rather than the northeast. CFSR records, on average, a temp-

erature anomaly of 20.338C throughout the peak 2015–2016

El Niño period. The temporal signature of anomalies over

Africa shows a much greater level of coherence than the

spatial patterns. All four reanalyses record a peak, short-

lived positive temperature anomaly in February 2016, with

ERA-Interim, MERRA2 and JRA55 recording the magnitude

of this peak as 1.78C above the long-term average.

In Southeast Asia, there is again modest spatial

coherence between reanalyses. All analyses show strong

positive maximum anomalies in peninsular southeast Asia

(Vietnam-Thailand), and weaker and less coherent anomalies

in insular Asia. MERRA2 and JRA55 record nearly average

conditions prevailing over large parts of the maritime conti-

nent, while ERA-Interim records a widespread positive

temperature anomaly that, averaged over all forest areas,

reaches 0.78C. CFSR shows some localized small positive
temperature anomalies around southern Borneo, but other-

wise records the El Niño period as a relatively mild event

(0.378C). The temporal signatures show a high degree of

covariance and reveal a double peak in temperature

anomalies, the first occurring in December 2016, and the

second in April 2016.

(ii) Precipitation
In contrast to the temperature datasets, there is generally

good agreement in the spatial pattern of mean precipitation

anomalies, with three of the four rainfall datasets showing

substantial rainfall deficits in the northeast of Amazonia,

over eastern Borneo, portions of Sumatra and southern

New Guinea (between 250 and 2100 mm/month). Mean

and maximum precipitation anomalies for the 2015–2016 El

Niño are presented in figure 1d,e, and the zonally averaged

time-series of precipitation anomalies for each continent are

shown in figure 1f. PERSIANN-CDR is the only product to

depart from this trend, modelling instead an extensive and

substantial negative precipitation anomaly over the south

and central portions of Amazonia and a neutral-to-positive

rainfall anomaly over northeast Amazonia. Africa appears

to have largely avoided any negative precipitation anomaly

during this El Niño event with the mean anomaly ranging

from 27.3 mm/month according to CHIRPS, to 20.8 mm/

month according to PERSIANN-CDR (table 1). Maximum

precipitation anomalies during the El Niño period show

greater spatial variability between products than the mean

anomaly, with large regions of Amazonia and Africa show-

ing greater than 75 mm/month differences in total

precipitation for the driest month. However, when these

differences are averaged over each continent, with the excep-

tion of PERSIANN-CDR, the magnitude of maximum

precipitation anomalies broadly align (table 1).

The time-series in figure 1f reveal that each of the rainfall

datasets strongly covaries. South America experienced a sig-

nificant and prolonged dry spell from August 2015 until

January 2016, African conditions were approximately neutral

throughout the El Niño period and Southeast Asia experi-

enced overall drier conditions from February 2015 until

November 2015. Driven by an apparently very large negative

precipitation deficit over the southern half of Amazonia,

PERSIANN-CDR simulated an extreme negative precipitation

anomaly in January, February and March of 2016.

(b) Station assessment
(i) 2015 – 2016 El Niño
To evaluate which products most reliably capture the weather

of the 2015–2016 El Niño in the tropical forest biome, station

observations were filtered to the 2015–2016 El Niño period

and compared to the estimates from each climate product.

Tables 2 and 3 present the agreement statistics for temperature

and precipitation, respectively (corresponding scatterplots are

available in electronic supplementary material, figure S2).

The near-surface air temperature results indicate that

ERA-interim best modelled monthly mean temperatures

during the 2015–2016 El Niño. On all three tropical conti-

nents, ERA-Interim records the lowest MAE over Africa

and Southeast Asia, it achieves the highest level of agreement

of the four products (dr ¼ 0.46 and 0.42, respectively) and has

a similar level of agreement to MERRA2 over South America

(dr ¼ 0.52 versus dr ¼ 0.55). Most products appear to have a

http://rstb.royalsocietypublishing.org/
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Table 1. Zonal statistics for the mean and maximum temperature and precipitation anomalies during the 2015 – 2016 El Niño. These values correspond to the
mean of all pixels within each continental region shown in figure 1a,b,d,e delineating the lowland tropical forest biome.

product

South America Africa Southeast Asia

mean max mean max mean max

temperature (8C)

ERAI 0.87 2.23 0.66 1.86 0.70 1.66

MERRA2 1.13 3.00 0.39 2.04 0.51 1.72

JRA55 0.47 1.75 0.40 2.03 0.39 1.58

CFSR 0.33 1.53 20.33 0.78 0.37 1.40

precipitation (mm/month)

TRMM 222.7 2137.6 23.3 293.0 232.8 2186.1

CHIRPS 220.8 2123.7 27.3 278.3 241.8 2187.1

PERSIANN-CDR 234.9 2190.2 20.8 294.0 233.8 2169.9

CMAP 224.9 2125.3 22.3 277.1 238.3 2187.7
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systematic cold bias of approximately 1–28C with the slopes

of the least-squares regression commonly less than 1 and scat-

ter points routinely below the 1 : 1 line, apart from MERRA2,

which appears to have substantially over-estimated tempera-

tures at the high end of the temperature distribution (slope ¼

1.27). Of the four products evaluated, CFSR performed the

worst on all statistical metrics across each continent, indicat-

ing that its ability to model near-surface temperatures

during the 2015–2016 El Niño is severely limited.

The results for total monthly rainfall indicate that, over

South America and Southeast Asia, TRMM achieved the closest

level of agreement and the lowest mean error, with results clo-

sely conforming to observations (table 3). CHIRPS also closely

tracked the rain gauge data from Southeast Asia with dr, R2

and error scores similar to TRMM. Rainfall records in Africa

during the El Niño period are extremely limited, with only 23

observations recorded across six stations, with half of our data

coming from a single station in the Lopé National Park,

Gabon. Hence, the assessment statistics should be viewed

with caution. Nevertheless, on the basis of these results

CHIRPS performs best, with a dr score of 0.78 and an MAE

10 mm/month lower than TRMM. PERSIANN-CDR per-

formed substantially worse than TRMM and CHIRPS on all

three continents.

(ii) 1980 – 2016
The performance of the four reanalysis temperature datasets

over the full satellite observation period is presented in

table 4. As with the results of the station assessment during

the 2015–2016 El Niño, ERA-Interim and MERRA2 perform

substantially better than JRA55 and CFSR. On all three tropi-

cal continents, MERRA2 achieves the lowest MAE (1.228C in

South America, 1.418C in Africa and 1.478C in Southeast

Asia) and MERRA2 and ERA-interim achieve a very similar

level of agreement. Again, there is predominately a cold

bias in these temperature datasets on the order of 1–28C,

with the cold bias greatest over Southeast Asia. Over South

America, MERRA2 and CFSR both substantially overestimate

temperatures above the 95th percentile (see Q–Q plots in

electronic supplementary material, figure S4). Most of the

errors in these datasets are systematic rather than random,
except for MERRA2 over South America where 61% of the

MSE is attributable to random errors.

Results for the precipitation datasets are shown in table 5.

CHIRPS performs substantially better than both TRMM and

PERSIANN-CDR over South America and Africa, achieving a

high level of agreement (dr¼ 0.77 and 0.80, respectively) and

relatively low mean error (less than 50 mm/month). Over

Southeast Asia, TRMM and CHIRPS achieve very similar

scores across all statistical metrics. PERSIANN-CDR performs

similarly to the other products over South America but performs

substantially worse over Africa and Southeast Asia. All the pro-

ducts tend to considerably underestimate rainfall in high rainfall

months, and marginally overestimate lower monthly rainfall

totals (electronic supplementary material, figure S4). Most

values depart from the 1 : 1 line at the 90th percentile, in accord-

ance with findings elsewhere [3,18,37]. Over Africa,

PERSIANN-CDR grossly underestimates rainfall beyond the

75th percentile. The errors in these datasets are generally sys-

tematic, except for PERSIANN-CDR in Southeast Asia where

the systematic and unsystematic errors are approximately equal.
4. Discussion and conclusion
(a) Characterizing the 2015 – 2016 El Niño
(i) Temperature
The results of the El Niño period station assessment indicate

that ERA-Interim and MERRA2 (up to the 95th percentile)

provide the best overall guide for characterizing the spatio-

temporal pattern of tropical temperature anomalies during

the 2015–2016 El Niño, and we take these products as our

best description of the climate characteristics of the El Niño

in tropical forest regions. Over South America, a widespread

positive temperature anomaly of at least 18C occurred over

the eastern half of Amazonia, while smaller regions in the

northeast and southeast probably reached a mean tempera-

ture anomaly closer to 1.58C. During late 2015 and early

2016, the northeast of Amazonia probably experienced

more extreme conditions with monthly mean temperatures

greater than 38C above average. The period of peak positive

http://rstb.royalsocietypublishing.org/
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temperature anomalies in South America began in July of

2015 and extended until mid-2016.

The African temperature patterns are harder to resolve as

the divergence between products here was the greatest. Again

though, ERA-Interim provides the best guide and it is likely

that some regions of the Congo basin reached a mean

anomaly of 0.5–18C. Temporally, the products all agree that

African tropical forests experienced a short-lived temperature

spike in February 2016, but the spatial extent of this anomaly

is difficult to resolve and underscores the need for a more

extensive on-the-ground climate monitoring network.

In Southeast Asia, regions around Laos and Cambodia prob-

ably experienced a mean positive temperature anomaly

approaching 18C. The magnitude of other positive temperature

anomalies shows a high degree of inconsistency between pro-

ducts, making it difficult to conclude which regions

experienced the most temperature stress. However, averaged

over the entire region, Southeast Asia probably experienced a

positive temperature anomaly of 0.5–18C. Positive temperature

anomalies occurred from November 2015 until May 2016, with

a period of recovery to nearly average temperatures during

February 2016.

(ii) Precipitation
In contrast to the reanalysis temperature datasets, three of the

four precipitation datasets were relatively consistent, and the

station assessment suggests close agreement with rainfall

gauge observations. Substantial rainfall deficits occurred in

the northeast and southeast of Amazonia, over eastern

Borneo, portions of Sumatra and southern New Guinea.

Much of Central Africa appears to have largely avoided any

widespread or prolonged precipitation deficit during this El

Niño, but moderate deficits were observed in coastal West

and Central Africa. Results for Central Africa come with the

caveat that very few gauge observations are used for bias cor-

rection, so the uncertainty of the products is probably high

over this region. The timing of these rainfall deficits occurred

from August 2015 until January 2016 in South America, and

Southeast Asia experienced overall drier conditions from Feb-

ruary 2015 until November 2015. In Southeast Asia, the

negative precipitation anomaly occurred before the positive

temperature anomaly, with rainfall largely recovering by the

time temperatures peaked. Over South America, the tempera-

ture and precipitation anomalies both temporally and

spatially coincide, thereby probably exacerbating the negative

impact of El Niño conditions on the tropical forests of this

region. Given the spatio-temporal coherence of climate

anomalies over northeastern Amazonia during the 2015–

2016 El Niño, this is likely to be a region where impacts on

the tropical forest carbon cycle are most pronounced.

(b) Quality of gridded climate products in the tropics
The findings from the longer-term station assessment indicate

that ERA-Interim and MERRA2 are the most reliable near-sur-

face reanalysis air temperature products over lowland tropical

forests, though even these datasets generally have a relatively

low level of agreement with on-the-ground observations.

JRA55 and CFSR both perform significantly worse and are not

recommended for use in the tropics. Borrowing from con-

clusions reached elsewhere [11,38], CFSR probably performs

poorly due to the reanalysis being executed via six parallel-

runs covering different periods, which were then joined to
produce the final dataset. JRA55 excludes all atmospheric

pressure data over South America to counter a dry bias over

the Amazon Basin that plagued their earlier reanalysis, JRA25,

and undoubtedly this contributes to its relatively poor perform-

ance in this region. The systematic cold bias seen in all

reanalyses may be closely related to the different estimates of

rainfall in the reanalysis products. For example, relative to rain-

fall in the Global Precipitation Climatology Project (GPCP)

dataset, ERA-Interim significantly overestimates tropical rain-

fall [10]. The extra cloud-cover associated with enhanced

precipitation reduces modelled solar radiation reaching the sur-

face and hence suppresses tropical temperatures [39]. Where

these biases are systematic and uniform, it may be possible to

perform a simple bias correction using a 1–28C offset to bring

reanalysis temperatures into line with station observations

within a region of interest.

Three high-resolution combined satellite-gauge rainfall

products, TRMM 3B42 V7 Daily, CHIRPS V2.0 and PER-

SIANN-CDR were evaluated to reveal which of these

products best-estimate rainfall over tropical forests at the con-

tinental scale. Point-to-pixel analysis between satellite

estimates and station measurements reveal that CHIRPS per-

forms best over South America and tropical Africa, and

TRMM and CHIRPS perform similarly in Southeast Asia. PER-

SIANN-CDR generally performs significantly worse than the

other products, and in South America, where it performs com-

parably with TRMM and CHIRPS, it provides a spurious

precipitation deficit during the 2015–2016 El Niño. It is there-

fore not recommended that PERSIANN-CDR be used for

analysis over tropical forests. All the products tend to signifi-

cantly underestimate rainfall totals in high rainfall months

and slightly overestimate rainfall in very low rainfall months.

These datasets should therefore be used with caution when

attempting to characterize droughts through metrics such as

the Climatological Water Deficit, as rainfall estimates may

fail to capture heavy rainfall events that reset moisture deficits.

In conclusion, we have evaluated a range of global temp-

erature and precipitation products over the tropical forest

biome, compared these products against ground observation

and used the best performing of these products to draw the

most likely general spatial and temporal characteristics of the

2015–2016 El Niño over the tropical forest biome. Our analysis

demonstrates that caution is needed in the use and interpret-

ation of these products, but overall conclusions about the

spatio-temporal footprint of the El Niño can be drawn.
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