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Supplementary Information

Supplementary Table 1: Per cent coverage of the sPlot 2.1 database with original trait values,
with respect to species for which original trait values were measured in TRY (of a total of
58,065 species in sPlot 2.1), to species x plot observations for which original trait values were
available (of a total of 21,050,514 observations) and to plots (of a total of 1,104,219 plots for
which coordinates and environmental information was available). For a comparison with gap-
filled trait values, per cent coverage across all species is 45.87%, per cent coverage of all
species x plot occurrences is 88.7%, and per cent coverage of plots is 100%.

Trait Abbreviation Coverage of Coverage of Coverage
species % occurrences %  of plots %
Leaf area LA 37.38 87.11 99.65
Specific leaf area SLA 34.66 89.16 100.00
Leaf fresh mass Leaf.fresh.mass 7.04 47.89 88.79
Leaf dry matter content LDMC 15.89 81.94 97.78
Leaf C LeafC 15.14 65.60 95.97
Leaf N LeafN 28.27 77.57 99.16
Leaf P LeafP 18.53 60.99 96.54
Leaf N per area LeafN.per.area 18.51 60.78 94.98
Leaf N:P ratio Leaf.N:P.ratio 12.53 45.32 93.58
Leaf 6°N Leaf.deltal5N 7.14 11.10 72.28
Seed mass Seed.mass 59.64 91.18 99.65
Seed length Seed.length 9.35 75.01 93.82
Seed number per Seed.num.rep.unit
reproductive unit 7.22 72.82 92.71
Dispersal unit length Disp.unit.length 11.40 81.36 93.82
Plant height Plant.height 58.03 96.58 99.90
Stem specific density SSD 22.35 29.26 86.75
Stem conduit density Stem.cond.dens 15.24 10.88 53.15

Conduit element length Cond.elem.length  13.18 7.62 48.20




Supplementary Table 2: Environmental variables used as predictors. Climate data were obtained from CHELSA° (www.chelsa-climate.org),
GDD1 and GDD5 were calculated from CHELSA data, based on monthly temperature and precipitation values for the years 1979-2013-4!, The
index of aridity (AR) and potential evapotranspiration (PET) were extracted from the CGIAR-CSI website (www.cgiar-csi.org). Soil variables were
obtained from the SOILGRIDS project (https://soilgrids.org/) and reflect mean values expected at 0.15 m depth.

Variable Abbreviation Unit Data source
Annual Mean Temperature Bio01 °C*10 CHELSA
Mean Diurnal Range (Mean of monthly (maximum Bio02 °C CHELSA
temperature - minimum temperature))

Isothermality (bio2/bio7) (* 100) Bio03 - CHELSA
Temperature Seasonality (standard deviation of monthly Bio04 °C*100 CHELSA
temperature averages )

Max Temperature of Warmest Month Bio05 °C*10 CHELSA
Min Temperature of Coldest Month Bio06 °C*10 CHELSA
Temperature Annual Range (bio5-bio6) Bio07 °C*10 CHELSA
Mean Temperature of Wettest Quarter Bio08 °C*10 CHELSA
Mean Temperature of Driest Quarter Bio09 °C*10 CHELSA
Mean Temperature of Warmest Quarter biol0 °C*10 CHELSA
Mean Temperature of Coldest Quarter biol1 °C*10 CHELSA
Annual Precipitation biol2 mm/year CHELSA
Precipitation of Wettest Month biol3 mm/month CHELSA
Precipitation of Driest Month biol4 mm/month CHELSA
Precipitation Seasonality biol5 coefficient of variation CHELSA
Precipitation of Wettest Quarter biol6 mm/quarter CHELSA
Precipitation of Driest Quarter biol7 mm/quarter CHELSA
Precipitation of Warmest Quarter biol8 mm/quarter CHELSA
Precipitation of Coldest Quarter biol9 mm/quarter CHELSA
Growing degree days above 1°C GDD1 °C days calculated
Growing degree days above 5°C GDD5 °C days calculated
Index of aridity AR (*10,000) CGIAR-CSI



Potential evapotranspiration

Cation exchange capacity of soil

Soil pH

Coarse fragment volume

Soil organic carbon content in the fine earth fraction
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Supplementary Fig. 1: Distribution of plots in sPlot 2.1. The map shows plot density in a
Mercator projection with a hexagonal grid with a radius of 120.14 km, corresponding to 5000
km? per grid cell at the equator. Hexagons at 60° latitude have a size of 1250 km?.
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Supplementary Fig. 2: Visualisation of the Pearson correlation matrix of plot-level trait means
(community-weighted means, CWMs) of all 18 traits (rows) in the entire dataset (n =
1,114,304) with all 30 environmental predictors (columns). Positive correlations are shown in
blue, negative ones in red colour, with increasing colour intensity as the correlation value
moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of the
correlation®'. Rows and columns are arranged from top to bottom and from left to right
according to decreasing absolute correlation values. The highest correlation coefficient
(between stem specific density and PET) was 0.395 (r*=0.156). The best predictors for the
plant height and seed mass trade-off were potential evapotranspiration (PET) and growing
degree days above 5°C (GDDS5), with r>=0.093 and 0.052 for plant height and r*=0.099 and
0.074 for seed mass, respectively. The best predictors for traits of the leaf economics
spectrum were PET and the seasonality in precipitation (biol5), with r>=0.078 and 0.051 for
specific leaf area (SLA) and r?=0.039 and 0.024 for leaf dry matter content (LDMC),

respectively. See Table 2 and Supplementary Table 2 for the description of traits and
environmental variables.
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Supplementary Fig. 3: Visualisation of the Pearson correlation matrix of within-plot trait

variances (community-weighted variances, CWVs) of all 18 traits (rows) in the entire dataset
(n=1,098,015) with all environmental predictors (columns). Positive correlations are shown
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in blue, negative ones in red colour, with increasing colour intensity as the correlation value

moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of the
correlation®'. Rows and columns are arranged from top to bottom and from left to right

according to decreasing absolute correlation values. The highest correlation coefficient was

encountered between specific leaf area (SLA) and the volumetric content of coarse fragments

in the soil CoarseFrags, 1*=0.036), followed by the correlation of PET to CWV of conduit

element length (r>=0.035). See Table 2 and Supplementary Table 2 for the description of traits

and environmental variables.
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Supplementary Fig. 4: Principal Component Analysis of global plot-level trait means
(community-weighted means, CWMs), based on the original trait values measured for the
species from the TRY database for the six traits used by Diaz et al.! (leaf area, specific leaf
area, leaf N, seed mass, plant height and stem specific density). The plots (n = 954,459) are
shown by coloured dots, with shading indicating plot density on a logarithmic scale, ranging
from yellow with 1-8 plots at the same position to dark red with 5011626 plots. Post-hoc
correlations of PCA axes with climate and soil variables are shown in blue and magenta,
respectively. Arrows are enlarged in scale to fit the size of the graph; thus, their lengths show
only differences in variance explained relative to each other. Variance in CWM explained by
the first and second axis was 43.5% and 30.9%, respectively. The vegetation sketches
schematically illustrate the size continuum (short vs. tall) and the leaf economics continuum
(low vs. high SLA and leaf N content per dry mass in dark and light green colours,
respectively). See Table 1, 2 and Supplementary Tables 2 for the description of traits and



51 environmental variables and compare with Fig. 2 for the same analyses with 18 traits based on
52  gap-filled trait-data.
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Supplementary Fig. 5: Visualisation of the Pearson correlation matrix of plot-level trait means
(community-weighted means, CWMs) of all 18 traits (rows) based on the original trait values
measured for the species from the TRY database in the entire dataset (n = 1,104,219) with all
30 environmental predictors (columns). Positive correlations are shown in blue, negative ones
in red colour, with increasing colour intensity as the correlation value moves away from 0.
The eccentricity of the ellipses is scaled to the absolute value of the correlation®'. Rows and
columns are arranged from top to bottom and from left to right according to decreasing
absolute correlation values. The highest correlation coefficient was encountered for Stem
conduit density and growing degree days above 1°C (GDDI1, r?=0.242), with similarly high
coefficients of determination for growing degree days above 5°C (GDDS5), mean annual
temperature (biol) and mean temperature of the coldest quarter (bio 11). There was also a
high correlation of stem specific density and PET (1*=0.152). The best predictors for the plant
height and seed mass trade-off were potential evapotranspiration (PET) and growing degree
days above 5°C (GDD5), with r*=0.093 and 0.051 for plant height and r*=0.099 and 0.074 for
seed mass, respectively. The best predictors for traits of the leaf economics spectrum were
PET and the seasonality in precipitation (biol5), with r>=0.068 and 0.047 for specific leaf
area (SLA), respectively. See Table 2 and Supplementary Table 2 for the description of traits
and environmental variables.
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Supplementary Fig. 6: Principal Component Analysis of plot-level trait means (community-
weighted means, CWM) of forest communities only in the dataset. The plots (n = 330,873)
are shown by coloured dots, with shading indicating plot density on a logarithmic scale,
ranging from yellow with 14 plots at the same position to dark orange with 32453 plots.
Post-hoc correlations of PCA axes with climate and soil variables are shown in blue and
magenta, respectively. Arrows are enlarged in scale to fit the size of the graph; thus, their
lengths show only differences in variance explained relative to each other. Variance in CWM
explained by the first and second axis was 32.9% and 27.6%, respectively. The vegetation
sketches schematically illustrate low and high variation in the plant size and leaf economics
continua. See Table 2 and Supplementary Table 2 for the description of traits and
environmental variables.
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Supplementary Fig. 7: Visualisation of the Pearson correlation matrix of plot-level trait means
(community-weighted means, CWMs) of all 18 traits (rows) of forest communities only in the
dataset (n = 330,873) with all environmental predictors (columns). Positive correlations are
shown in blue, negative ones in red colour, with increasing colour intensity as the correlation
value moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of
the correlation®'. Rows and columns are arranged from top to bottom and from left to right
according to decreasing absolute correlation values. The highest correlation coefficient
(between leaf N:P ratio and the mean temperature of coldest quarter (biol1)) was 0.607
(r?=0.369). See Table 2 and Supplementary Table 2 for the description of traits and
environmental variables.
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Supplementary Fig. 8: Principal Component Analysis of plot-level trait means (community-
weighted means, CWMs) of non-forest communities only in the dataset. The plots (n =
513,035) are shown by coloured dots, with shading indicating plot density on a logarithmic
scale, ranging from yellow with 14 plots at the same position to dark red with 251-1111
plots. Post-hoc correlations of PCA axes with climate and soil variables are shown in blue and
magenta, respectively. Arrows are enlarged in scale to fit the size of the graph; thus, their
lengths show only differences in variance explained relative to each other. Variance in CWM
explained by the first and second axis was 24.3% and 17.5%, respectively. The vegetation
sketches schematically illustrate low and high variation in the plant size and leaf economics
continua. See Table 2 and Supplementary Table 2 for the description of traits and
environmental variables.
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Supplementary Fig. 9: Visualisation of the Pearson correlation matrix of plot-level trait means
(community-weighted means, CWMs) of all 18 traits (rows) of non-forest communities only
in the dataset (n = 513,035) with all environmental predictors (columns). Positive correlations
are shown in blue, negative ones in red colour, with increasing colour intensity as the
correlation value moves away from 0. The eccentricity of the ellipses is scaled to the absolute
value of the correlation®'. Rows and columns are arranged from top to bottom and from left to
right according to decreasing absolute correlation values. The highest correlation coefficient
(between leaf C content per dry mass and the volumetric content of coarse fragments in the
soil (CoarseFrags)) was 0.204 (r>=0.042). See Table 2 and Supplementary Table 2 for the
description of traits and environmental variables.
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Supplementary Fig. 10: Summary of Principal Components Analyses applied to 100
resampled subsets of plot-level trait means (community-weighted means, CWMs) from the
entire dataset for all 18 traits in the sPlot dataset. Each subset was resampled from the global
environmental space (see Methods) and comprised between 99,342 and 99,400 (mean 99,380)
plots. The coloured dots show the plots of one random example of these 100 subsets, with
shading indicating plot density on a logarithmic scale, ranging from yellow with 1-3 plots at
the same position to red with 10-81 plots in the subset. The loadings of each of the traits are
displayed by a grey circle, its radius scaled to the range of loadings on PC1 and PC2 of all
100 runs. Post-hoc regressions of PCA axes with each of the environmental variables are
illustrated by blue circles, its radius scaled to the range of correlations with PC1 and PC2. The
circles are rather small, indicating that both the loadings and the post-hoc correlations with the
environment had very similar values in the different runs. The mean variance in CWM
explained by the first and second axis across the 100 runs was 33.4% + 0.04 sd and 17.5% +
0.03 sd, respectively. The vegetation sketches schematically illustrate low and high variation



137  in the plant size and leaf economics continua. See Table 2 and Supplementary Table 2 for the
138  description of traits and environmental variables.

139



CoarseFrags

E
GDOD1
GDD5
bio01
bio11
bio13

. bio186
bio10
bio03
[s[[s1015}
bio18
bio04
bio12
pH
bio08
bio07
bio15
Siit
Soll_C
bio02
CEC
bio19
blo14
bio17
Clay
Sand

AR

o
Plant heignt g% 4 &

sso @

bio06
% bio0s

0.8
Stem.cond.dens

seed.mass @ 40
Leaf NP ratio |4

0.6

Leaf fresh.mass - 04
LA
Seed.length r 02
LeafP
LDMC
Disp.unit.length
SLA
LeafN.per.area L o4
Cond.elem.length
LeafC 06
Leaf.deltalsN
Seed.num.rep.unit -0.8
LeafN

140

141 Supplementary Fig. 11: Visualisation of the mean Pearson correlation coefficients of plot-
142 level trait means (community-weighted means, CWMs) of all 18 traits (rows) with all

143  environmental predictors (columns) of the 100 resampled subsets. Each subset was resampled
144  from the global environmental space (see Methods) and comprised between 99,342 and
145 99,400 (mean 99,379.5) plots. Positive correlations are shown in blue, negative ones in red
146  colour, with increasing colour intensity as the correlation value moves away from 0. The
147  eccentricity of the ellipses is scaled to the absolute value of the correlation®'. Rows and
148  columns are arranged from top to bottom and from left to right according to decreasing
149  absolute mean correlation values. The highest mean correlation coefficient (between plant
150  height and potential evapotranspiration (PET) was 0.585 (r>=0.342). See Table 2 and

151  Supplementary Table 2 for the description of traits and environmental variables.
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