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ABSTRACT

Reliable assessment of forest structural types (FSTs) aids sustainable forest management. We developed a
methodology for the identification of FSTs using airborne laser scanning (ALS), and demonstrate its generality by
applying it to forests from Boreal, Mediterranean and Atlantic biogeographical regions. First, hierarchal clus-
tering analysis (HCA) was applied and clusters (FSTs) were determined in coniferous and deciduous forests using
four forest structural variables obtained from forest inventory data — quadratic mean diameter (QMD), Gini
coefficient (GC), basal area larger than mean (BALM) and density of stems (N) —. Then, classification and re-
gression tree analysis (CART) were used to extract the empirical threshold values for discriminating those
clusters. Based on the classification trees, GC and BALM were the most important variables in the identification
of FSTs. Lower, medium and high values of GC and BALM characterize single storey FSTs, multi-layered FSTs
and exponentially decreasing size distributions (reversed J), respectively. Within each of these main FST groups,
we also identified young/mature and sparse/dense subtypes using QUMD and N. Then we used similar structural
predictors derived from ALS — maximum height (Max), L-coefficient of variation (Lcv), L-skewness (Lskew), and
percentage of penetration (cover), — and a nearest neighbour method to predict the FSTs. We obtained a greater
overall accuracy in deciduous forest (0.87) as compared to the coniferous forest (0.72). Our methodology proves
the usefulness of ALS data for structural heterogeneity assessment of forests across biogeographical regions. Our
simple two-tier approach to FST classification paves the way toward transnational assessments of forest structure
across bioregions.

1. Introduction

Bourdier et al., 2016) and turnover (Marvin et al., 2014), biodiversity
(Gove et al., 1995; Pommerening, 2002), and for identifying important

The structural complexity of forest affects the growth rate of in-
dividual trees and the dynamics of tree communities (Donato et al.,
2012). Knowledge of this structural variations is key to understand
ecosystem functioning (Coomes and Allen, 2007a) and sustainable
forest management planning (Bergeron et al., 2002). Accurate struc-
tural heterogeneity assessment and stand development categorization is
important for long-term prediction of biomass production (Gove, 2004;

habitats for wildlife (Vihervaara et al., 2015). It can also assist the
planning and monitoring of different silvicultural regimes and forest
management strategies (McElhinny et al., 2005; Valbuena et al.,
2016a). Forest structure information may also be helpful to reduce
sampling efforts and costs (Maltamo et al., 2010; Moss, 2012).

From an ecological point of view, forest structure is an important
attribute at community level and consists of three major components:
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horizontal structure (spatial pattern, gaps and tree groups), vertical
structure (number of tree layers) and species richness (O'Hara et al.,
1996; Zimble et al., 2003; Pascual et al., 2008). However, unlike other
forest attributes, forest structure lacks a clear and fixed definition,
which thus varies from one application to another (Maltamo et al.,
2005). Various approaches are found in the literature for identifying
forest structural types (FSTs), such as stand developments classes
(Valbuena et al., 2016a), patterns of growth and mortality (Coomes and
Allen, 2007b), ecology of tree populations (O'Hara et al., 1996), stand
age (O’Hara and Gersonde, 2004) or tree diameter distributions (Linder
et al.,, 1997). There is also no consensus on the relevant classes to
identify as FSTs, and thus a disparate number of them can be found, for
example including understorey vegetation/regeneration (Gougeon
et al., 2001), single storey to multi-storey structures (Zimble et al.,
2003; O’Hara and Gersonde, 2004; Maltamo et al., 2005), suppressed
tree storey (Hyyppd et al., 2008), young and mature stands (Means
et al., 2000; Neesset, 2002), sparse and dense stands (Maltamo et al.,
2004; Hyyppa et al., 2008) and reversed J-types of forest structures
(Linder et al., 1997; Valbuena et al., 2013). There is also great disparity
on the forest variables and indicators employed for quantitative as-
sessment of structural heterogeneity (Lexergd and Eid, 2006; Valbuena
et al., 2014) and FST categorization (Valbuena et al., 2013). Overall,
FST definition and description may be dependent on the observer and
thus there is a need to develop more objective quantitative approaches
(e.g., Moss, 2012; Valbuena et al., 2013) that can be useful across
biomes and bioregions. Here we propose a region-independent FST
characterization by a combination of attributes describing tree diameter
distribution - location, spread, skewness and density — using the fol-
lowing forest structural attributes: quadratic mean diameter (QMD),
Gini coefficient (GC), basal area larger than mean (BALM) and density
of stems (N).

The most common descriptors used to categorize forest dynamics
and development are the QMD and N (Gove, 2004). The QMD can be
described as the diameter of a tree having an average basal area and N
is the number of stems per hectare (Curtis, 1982). These two parameters
(QMD and N) are key to determine the need for planting or thinning in
forest stands. Combinations of QMD and N are typically employed in
the determination of forest development classes (e.g., Valbuena et al.,
2016a), maximum stand density limits and occurrences of mortality in
forest stands, impacts of habitat fragmentation on forest structure
(Echeverria et al., 2007) and development of stand density diagrams
(Newton, 1997; Gove, 2004).

The GC, an index of inequality widely used in econometrics has
become popular in forest science due to its robust statistical properties
and capacity to rank FSTs based on tree size variability (Lexerpd and
Eid, 2006; Duduman, 2011; Valbuena et al., 2012). It has been used to
evaluate size inequality (Weiner, 1985), structural heterogeneity
(Lexerpd and FEid, 2006), successional stages (Duduman, 2011;
Valbuena et al., 2013), relationship of relative dominance in forest
stands (Valbuena et al., 2012) and to discriminate among differently-
shaped diameter distributions (Bollandsas and Naesset, 2007; Valbuena
et al., 2016b). Valbuena (2015) postulated that values of GC and BALM
describe the spread and skewness of the tree size distribution, respec-
tively, and that together they provide the best means of categorising
FSTs (Gove, 2004; Valbuena et al., 2014). These FSTs can be analysed
further to indicate whether trees interaction are dominated by sym-
metric competition associated with resource depletion, or asymmetric
competition associated with resource pre-emption (Weiner, 1985). Al-
though some theoretical values have been postulated discriminating
FSTs from GC and BALM (Valbuena et al., 2013, 2014), there is a need
to empirically investigate threshold values of GC and BALM in such
categorization.

Airborne laser scanning provides an excellent means for forest
structural heterogeneity assessment as the ALS data produce accurate
canopy information (Maltamo et al., 2005; Valbuena et al., 2016b).
Metrics derived from ALS height distribution describe the key
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characteristics of forest structure and could be used to monitor various
aspects of forest dynamics (Jaskierniak et al., 2011; Valbuena et al.,
2013). Numerous studies have used ALS data and demonstrated that it
is a useful tool to characterize variation in forest structure (Maltamo
et al., 2005; Pascual et al., 2008; Valbuena et al., 2017; Fedrigo et al.,
2018). For this reason, it is important to find methodologies for pre-
diction of FSTs from ALS which can be robust across ecoregions.

The objective of this research was to carry out a classification of
FSTs using a combination of these four forest attributes - QMD, GC,
BALM and N - postulating that together they can achieve a full de-
scription for forest structure where each FST contains a range of all
possible horizontal and vertical structures. Using data from three dif-
ferent biogeographical regions — Boreal, Mediterranean and Atlantic —,
we aimed at developing a region-independent methodology for FST
characterization. We also evaluated the capacity of using ALS to
achieve a reliable classification of those FSTs.

2. Material and methods
2.1. Study sites and data collection

Forest and ALS data from three biogeographical regions (Fig. 1)
were used to identify, classify and predict FSTs:

(a) Boreal: Kiihtelysvaara Forest, Finland

Kiihtelysvaara forest is a common boreal managed forest located in
the Eastern Finland (62°31’N, 30°10’E). The area is dominated by Scots
pine with the presence of Norway spruce and deciduous species as
minor tree species. The field data consisted of 79 squared plots col-
lected during May-June 2010 (Maltamo et al., 2012). Plot size was
20 X 20 m, after some of them were subsampled from larger plots
(Valbuena et al., 2014) with the intention to analyse a homogeneous
dataset consistent with the other two regional sites involved in this
study. The data included diameters and breast height (dbh) for all trees
with a height greater than 4m or dbh > 5cm. A high resolution ALS
dataset was acquired on June 26, 2009 using ATM Gemini sensor
(Optech, Canada), Its scan density was 11.9 pulsesm ™2 obtained from
600 to 700 m above ground level at a pulse rate of 125kHz. Field of
view (FOV) was 26° and scan swath was 320 m wide with a 55% side
overlap between the strips.

(b) Mediterranean: Valsain Forest, Spain

Valsain forest is a shelterwood managed (Valbuena et al., 2013)
Scots pine area located in Segovia province, Spain (40°48'N 4°01'W), at
300-1500m above sea level. The field data consisted of 37 circular
plots with 20 m radius measured during summer 2006. All seedlings
and saplings were measured within an inner 10m radius subplot,
whereas in the outer annulus only trees with dbh > 10cm were mea-
sured. ALS data were captured on September 2006 using an ALS50-II
from 1500 m above ground level with a pulse rate of 55 kHz from Leica
Geosystems (Switzerland). A FOV of 25° rendered a 665 m ground bi-
directional scan width with 40% side lap. The average scan density of

ALS data was 1.15 pulsesm ~ 2.

(c) Atlantic: Wytham Woods, United Kingdom

Wytham Woods is a managed lowland ancient woodland located in
Oxfordshire, UK (51°46'N, 1°20°W). The dominant species are ash, sy-
camore as well as oak, hazel and maple trees (Savill et al., 2011). We
used data from a permanent plot with a total area of 18 ha measured in
2010. The area of the permanent plot is further subdivided into 450
subplots sizing 20 X 20 m each. Field data included dbh of all stems
greater than 1 cm. Leica ALS50-II LiDAR system with a 96.8 kHz pulse
rate and 35° FOV was used from 2500 m above sea level for ALS data
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Fig. 1. Map of the European biogeographical regions and the study sites (Boreal/Finland, Mediterranean/Spain and Atlantic/UK) (European Environmental Agency,

2018).

acquisition and a low resolution ALS data of 0.918 pulses'm ™2 density
were acquired on June 24, 2014. Since growth is low in ancient
woodlands and FST dynamics change slowly, the time differences be-
tween field and remote sensing acquisition can be assumed to have little
effect in the classifications.

2.2. Data analyses

Forest stand attributes and characteristics were calculated by ag-
gregating the tree-level information into per-hectare totals at plot-level
(Tables 1a and 1b): we calculated quadratic mean diameter (QMD, cm),
the Gini coefficient (GC) (Weiner, 1985), the proportion of basal area
larger than the QMD (BALM) (Gove, 2004), and stem density (N,
stemsha™1). The first task was to identify the potential clusters that
could be rendered when using these four descriptors
(QMD, GC, BALM and N). We grouped the data into coniferous
(Boreal plus Mediterranean combined) and deciduous forests (Atlantic),
after preliminary results showed that it was more convenient to carry
out separate analyses for these two groups. The total number of field

Table 1b
Summary of study area properties.
Global

Number of plots 232
Parameter Min Mean Max SD
QMD 10.23 21.49 48.3 8.76
GC 0.15 0.57 0.89 0.19
BALM 0.52 0.78 0.95 0.09
N 75 1146 3500 629

QMD: quadratic mean diameter (cm); GC: Gini coefficient; BALM:Basal area
larger than mean; N: stand density (stems-ha™1); SD: standard deviation.

plots in the coniferous group was 116, and thus we randomly sub-
sampled 116 out of 450 field plots from the deciduous group, to make
further analysis consistent and obtain directly comparable results.
Then, we applied hierarchical clustering analysis (HCA) to both con-
iferous and deciduous forest to optimize the clusters that can be ren-
dered from the chosen forest attributes. The second task was to find the

Table 1a
Summary of study area properties.
Finland Spain UK

Number of plots 79 37 116
Parameter Min Mean Max SD Min Mean Max SD Min Mean Max SD
QMD 10.33 16.87 29.26 4.09 14.5 33.13 48.3 12.3 10.23 20.92 46.3 6.06
GC 0.21 0.45 0.81 0.15 0.15 0.43 0.87 0.25 0.33 0.69 0.89 0.1
BALM 0.52 0.77 0.95 0.08 0.55 0.72 0.93 0.12 0.58 0.81 0.95 0.06
N 425 1288 2025 612 167 732 1918 559 75 1181 3500 609

QMD: quadratic mean diameter (cm); GC: Gini coefficient; BALM:Basal area larger than mean; N: stand density (stemsha™1'); SD: standard deviation.

113



S. Adnan et al.

threshold values in both coniferous and deciduous forests which, when
applied to QMD, GC, BALM and N, were best able to determine FSTs.
This task was carried out using classification and regression trees
(CART), which in this case were employed to classify the forest data
into the clusters identified by the HCA analysis. The last task was to
investigate the reliability of the FST classification obtained from ALS.
The ALS classification was carried out using nearest neighbour (kNN)
imputation method. The FSTs identified as a result of the HCA were
employed as response variable in the kNN. All analyses were carried out
using the R environment (R Core Team, 2018).

2.2.1. Hierarchical clustering analysis

HCA consists of a series of successive merging (agglomerative
method) or splitting (divisive method) steps of individual observations
based on proximity measures (similarity, dissimilarity or distance) and
is used to determine meaningful clusters in a large group of data. We
calculated the most widely used proximity measure, which is the
Euclidian distance:

| P
du= | D Kion — Xim)?,

m=1

(€Y

where d, is the Euclidian distance between two individual cases k and [
in a m-dimensional space (of m = 1, 2.--p variables), and Xj,, and X,
are their values of the m™ variable. Since QMD, GC, BALM and N
were measured in different units, calculating the proximity measure dy,
directly on their original scales would unfairly weight some variables
over others. To deal with this contingency, we applied a standardization
of the raw variables prior to Euclidian distance calculation. We chose a
range-equalization method. Thus, each variable value X was normal-
ized to a scale 0-1, according to their empirical minimum (X,;,) and
maximum (X,,.) values (Table 1):

(2)

Then, one of the most challenging stages in clustering analysis is the
need to determine an optimal number c of clusters because the HCA
may run until a single cluster containing all observations (agglom-
erative method) or ¢ number of clusters each containing one observa-
tion (divisive method) are produced (Everitt et al., 2011). We used a
distortion curve to choose the optimum number c of clusters (Sugar and
James, 2003), since it shows the evolution of within-cluster sum of
squares for increasing number of clusters. Thereafter, we used function
hclust included in package fastcluster for HCA (Miillner, 2013), applied
the agglomerative procedure included in the function and divided the
data into the required optimum number c of clusters (FSTs).

Z = (X = Xpnin)! Xinax —

min);

2.2.2. Classification and regression tree (CART) analysis

After obtaining the HCA results and defining the FSTs that can be
identified, we were interested to find out empirical threshold values for
the chosen forest attributes (QMD, GC, BALM and N) that can be used to
separate different FSTs. To answer this question, we used CART analysis
which is a commonly used statistical modelling to identify important
ecological patterns (Breiman et al., 1984; Lawrence and Wright, 2001).
For the CART analysis, we employed the package recursive partitioning
and regression trees (rpart; Breiman et al., 1984), where the HCA results
(clusters) were the response variable and QMD, GC, BALM and N the
explanatory variables. The QMD and N were log-normalized to avoid the
high skewness of their distributions and make them approximately
normal. CART resolved values among the explanatory variables that
minimize the unexplained variance in response variable, the HCA clusters
in this case, recursively splitting the data into those clusters/FSTs. Since
the process is recursive, the result resembles a tree where each split is a
node with a classification decision between two branches. A large tree was
first produced, which was later pruned back to a desired size using func-
tion prune included in the package rpart, and we made it coincide with the
optimal ¢ decided upon at the HCA stage.
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2.2.3. Classification of forest structural types from ALS datasets

Supervised machine learning methods use a set of features to gen-
eralize phenomena observed from a sample or describe the relation-
ships among indicators. Examples of these methods include maximum
likelihood classification, nearest neighbour imputation, artificial neural
networks, random forest, support vector machine and naive Bayes
classifier (see e.g. Hastie et al., 2009). In the case of ALS, metrics that
describe the distribution of ALS return heights over the forest plots are
used to predict a FST that corresponds to each of them (Valbuena et al.,
2017; Adnan et al., 2017). These ALS metrics are then employed as
auxiliary variables to make a prediction throughout the scanned area
(Neesset, 2002; Maltamo et al., 2006). In this study, kNN method of
package class (Venables and Ripley, 2002) was used for prediction be-
cause of its simplicity and capacity to model complex covariance
structures. This method has been successfully employed for predicting
stand density, volume and cover types (Franco-Lopez et al., 2001). kNN
classification is based on dissimilarity measures that are computed as a
statistical distance to a reference sample plot in a feature space (Kilkki
and Pdivinen, 1987), just like those explained for HCA (Eq. (1)). The
ALS metrics used in the KNN were the maximum of (Max) of ALS return
heights over an area, the L-coefficient of variation (Lcv), L-skewness
(Lske), and the percentage of all returns above 0.1 m (Cover), because of
their high correlation with the chosen forest attributes (Lefsky et al.,
2005; Valbuena et al., 2017). The Max could be related to QMD because
of a strong tree diameter-height relationship (Enquist and Niklas, 2001;
Sumida et al., 2013) and Cover is useful to characterize the stand
density (Lefsky et al., 2005; Gorgens et al., 2015). Similarly, Lcv and
Lske are related to tree dominance (GC and BALM) and can be used to
detect tree size inequality and light availability (Valbuena et al., 2017;
Moran et al., 2018). Description of these ALS metrics and their related
proxy forest characteristics are also described in Table 2.

For accuracy assessment we used a leave-one-out cross-validation,
which consisted in eliminating each sample plot from the training data
before fitting a separate nearest neighbour model for predicting it.
CrossTable function of package gmodels (Warnes, 2013) was used to
elaborate a detailed accuracy assessment of the cross-validated con-
tingency metrics and infer their statistical significance. Bias towards
each given FST was assessed as the difference between producer’s and
user’s accuracies. Producer’s accuracy for a given FST was calculated as
the proportion of the observed field plots for that FST which were
correctly classified, whereas its user’s accuracy was the proportion of
field plots being classified as that FST which were correct (Story and
Congalton, 1986). To evaluate the degree of misclassification, we cal-
culated the overall accuracy (OA) and kappa coefficient (x) included in
the package ved (Meyer et al., 2014).

3. Results
3.1. Classification of field data into homogeneous clusters

The first step was to determine a statistical optimal number of
clusters for the HCA, which was found to be ¢ = 5 for both the con-
iferous and deciduous groups, when the decrease in within-cluster
variation stabilized after high decreases along the range ¢ = 1-5. In the
next step, we identified the threshold values for each explanatory
variable - QMD, GC, BALM and N - using CART. Each node

Table 2
Description of ALS metrics and their related forest characteristics.

Symbol Description Proxy forest characteristic
Max Maximum height of ALS metrics Dominant tree height

Lev L-coefficient of variation Tree size inequality

Lske L-skewness of ALS metrics Competitive dominance
Cover Percentage of all returns above 0.1 m Canopy cover
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Fig. 2. Classification tree based on the field data from (a) coniferous forest and (b) deciduous forest as a result classification and regression tree (CART) analysis.
Threshold values of the explanatory variables recursively divide the data into homogeneous clusters at each node, according to whether they meet the criterion
(positive to the left and negative to the right). Each cluster is then classified as a forest structural type (FST) according to criteria in Table 3 and their diameter
distributions (stem density and basal area proportions, and their 95% confidence intervals are shown). QMD: quadratic mean diameter (cm); GC: Gini coefficient;

BALM: basal areal larger than mean; and N: stand density (stemsha™1).

maximized the between-cluster explained variability, and thus their
order shows the importance of each variable in determining the FSTs
(Fig. 2a and b). In coniferous forest, the first cluster (having lowest
within-group variability) was produced by GC > 0.51 (Fig. 2a) and, in
deciduous forest, it was produced by BALM > 0.87 (Fig. 2b). This
iterative procedure was applied on either sides of the classification trees
and at the end, clusters with lowest within-cluster variability were
produced.
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3.2. Identification of forest structural types

The threshold values obtained from each classification tree (Fig. 2a
and b) were used in the identification of the FSTs, which we assigned
after inspecting simultaneously their diameter and basal area-weighted
distributions (these are the proportions per diameter class of the total
number of stems and basal area, respectively). Table 3 summarizes the
characteristics of each FST, and Fig. 3 shows the scatterplots which
were also useful for the identification of relevant FSTs.
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Fig. 2. (continued)

Fig. 2a shows the classification tree and diameter distribution of
each FSTs found in the coniferous forest group. Higher GC values
(=0.51) produced a neat segregation of reversed J distributions from
single storey and multi-layered types. This first cluster corresponded to
mature sparse reversed J, commonly called peaked reversed J (FST
#1.2) because they are characterized by a peak at the right end of their
distribution where very big trees take a large proportion of the total
basal area (which is best appreciated from the basal area-weighed

distributions in Fig. 2a and b) The next node identified young forests by
their high density of stems (N > 1339 treesha™ 1), which in this case
was a young dense single storey FST (#2.1). Then the threshold re-
garded the distinction of very mature single storey (#2.3) identified by
a high QMD > 36.6cm. The last node separated mature sparse multi-
layered FST (#3.2) areas from mature single storey FST (#2.2) by
BALM > 0.67.

Fig. 2b shows the classification tree and diameter distribution of

Table 3
Denomination of FSTs based on the four forest structural variables and their characteristics.
FST# Denomination Characteristics
#1.1 Young dense reversed J High GC, medium/high BALM, high N, and low QMD
#1.2 Mature sparse reversed J (Peaked reversed J) High GC, high BALM, medium/low N and high QMD
#2.1 Young dense single storey Medium GC, medium BALM, high N and low QMD
#2.2 Mature single storey Low GC, low BALM, medium N and medium QMD
#2.3 Very mature single storey Low GC, medium/low BALM, low N and high QMD
#3.1 Young dense multi-layered Medium GC, medium BALM, low N and high QMD
#3.2 Mature sparse multi-layered Medium GC, medium BALM, medium N and medium QMD

QMD: quadratic mean diameter (cm); GC: Gini coefficient; BALM: Basal area larger than mean; N: stand density (stems-ha~!).
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Fig. 3. Scatterplot showing five clusters/FSTs in each coniferous and deciduous forest. Axes show the normalized variable values (Eq. (2)). (QMD: quadratic mean
diameter (cm);BALM:Basal area largerQMD; GC: Gini coefficient; N: stand density (stems-ha™1)).

each FSTs found in deciduous forest. High values of BALM ( > 0.87)
separated mature sparse reversed J (#1.2). As in the coniferous group,
the next node identified young dense single storey (#2.1) forests by
their high stand density, N > 1998 treesha ™' in this case. The next node
found the threshold value of GC < 0.55 to identify mature sparse multi-
layered (#3.2) areas. Higher values of GC were found for the remaining
FSTs, young dense multi-layered (#3.1) and young dense reversed J
(#1.1), the latter identified by their lower QMD > 24.5cm.

The scatterplot distribution of all FSTs in the feature space of
QMD, GC, BALM and N (Fig. 3) showed that some FSTs are clearly
distinct while others present some degree of overlap. The most relevant
relationships were found in the cluster disaggregation observed on the
GC — BALM feature space, whereas the more traditional QMD — N
comparison can be useful to identify young/dense and mature/sparse
sub-types.

Tables 4a and 4b describes the statistical properties of each FST,
where young dense reversed J FST (#1.1) and mature sparse reversed J
(#1.2) were found to be the most frequent FSTs with 29.3% and 51.7%

observations in deciduous and coniferous forests, respectively. Fig. 4
shows the thematic map at the permanent plots in Wytham forest, il-
lustrating the natural spatial distributions of the resulting FSTs.

3.3. Prediction of forest structural types from ALS datasets

Table 5 shows the cross-validated results of the kNN predictions of
FSTs from ALS datasets of coniferous forest. Mature sparse reversed J/
peaked reversed J (#1.2) was accurately predicted. Young dense single
storey (#2.1) and mature single storey (#2.2) were slightly under-
estimated due to a high confusion with mature sparse multi-layered
(#3.2), which was in turn slightly overestimated. Very mature single
storey (#2.3) was also slightly overestimated. The overall accuracy of
the classification was OA = 0.73 and x = 0.64.

The results for kNN classification in deciduous forest are shown in
Table 6. All reversed J diameter distributions were very accurately
estimated, both the young dense (#1.1) and mature sparse (#1.2) re-
versed J subtypes. The remaining also obtained unbiased predictions,
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Table 4a
Total number of observations (field plots) and statistical properties of each
forest structural type in coniferous group.

Forest Structural Types (FST) #1.1 #2.1 #2.2 #2.3 #3.2
Number of Observations 34 22 11 19 30
QMD Minimum 11.62 10.33 16.22 36.97 13.22
Maximum 22.84 18.81 32.02 48.3 33.86
Mean 16.60 13.60 23.72 44.14 19.86
SD 3.20 1.98 4.98 3.08 4.43
GC Minimum 0.52 0.27 0.21 0.15 0.22
Maximum 0.86 0.5 0.43 0.47 0.5
Mean 0.68 0.41 0.28 0.25 0.38
SD 0.10 0.07 0.08 0.10 0.08
BALM Minimum 0.67 0.64 0.52 0.54 0.67
Maximum 0.95 0.85 0.65 0.89 0.87
Mean 0.84 0.73 0.60 0.66 0.78
SD 0.07 0.04 0.04 0.09 0.06
N Minimum 676 1375 425 167 310
Maximum 2200 3025 1146 421 1185
Mean 1402 2000 682 293 805
SD 383 403 257 74 229

QMD: quadratic mean diameter (cm); GC: Gini coefficient;BALM: basal areal
larger than mean; N: stand density (stemsha™'); SD: standard deviation.
#1.2: mature sparse reversed J/peaked reversed J; #2.1: young dense single
storey; #2.2: mature single storey; #2.3: very mature single storey; #3.2: ma-
ture sparse multi-layered.

Table 4b
Total number of observations (field plots) and statistical properties of each
forest structural type in deciduous group.

Forest Structural Types (FST) #1.1 #1.2 #2.1 #3.1 #3.2
Number of Observations 60 22 9 19 6
QMD Minimum 12.2 17.96 11.93 24.95 17.00
Maximum 2417 51.27 16.89 62.46 45.70
Mean 18.52 26.81 13.80 30.50 25.60
SD 3.02 8.19 1.54 8.09 10.88
GC Minimum 0.56 0.64 0.48 0.60 0.40
Maximum 0.86 0.91 0.78 0.85 0.54
Mean 0.71 0.80 0.65 0.72 0.49
SD 0.08 0.09 0.12 0.08 0.06
BALM Minimum 0.64 0.87 0.70 0.63 0.69
Maximum 0.87 0.99 0.85 0.87 0.83
Mean 0.80 0.91 0.76 0.80 0.76
SD 0.05 0.03 0.05 0.07 0.05
N Minimum 275 175 2150 150 300
Maximum 1975 1600 3050 1150 1250
Mean 1181 699 2494 598 871
SD 389 332 350 246 363

QMD: quadratic mean diameter (cm); GC: Gini coefficient;BALM: basal areal
larger than mean; N: stand density (stems+ha™1!); SD: standard deviation.
#1.1: young dense reversed J; #1.2: Mature sparse reversed J (Peaked reversed
J); #2.1: young dense single storey; #3.1: young dense multi-layered; #3.2:
mature sparse multi-layered.

although with lesser accuracy in the estimation following this order:
young dense single storey (#2.1) and multi-layered (#3.1), and mature
sparse multi-layered (#3.2) being the least accurately estimated be-
cause it was the least frequent FST. The prediction was overall fairly
unbiased, with OA = 0.87 and x = 0.81.

4. Discussion

In this article we present a two-tier methodology for forest structure
classification. The higher tier consists in using values of GC and BALM
to characterize reversed J (exponentially decreasing size distributions),
single storey and multi-layered. In a lower tier, QD and N were used
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Fig. 4. Thematic map showing the natural spatial distribution of the forest
structural types based on classification tree and field data from deciduous forest
(Atlantic biogeographical region) at Wytham Woods (UK) permanent experi-
mental plots.

to discriminate young/mature and sparse/dense subtypes for each of
those described for the higher tier. These FSTs can provide important
ecological information about natural dynamics — competitive (self)
thinning, mature thinning, and disturbances — (Coomes and Allen,
2007a), or help in identifying where these dynamics have been artifi-
cially modified (Valbuena et al., 2016b). In that same order, they also
show a degree in tree community development between those ecosys-
tems following metabolic scaling (Enquist and Niklas, 2001) to those
regulated by demographic equilibrium (Muller-Landau et al., 2006).
The simplicity of this two-tier approach to FSTs makes it feasible for its
adoption across ecoregions.

The proposed FST classification method has purposely been
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Table 5

Nearest Neighbour imputation contingency table (coniferous forest: Boreal/
Kiihtelysvaara Forest, Finland and Mediterranean/Valsain Forest, Spain). User’s
and producer’s accuracies are calculated over row and column totals, respec-
tively.

Predicted Observed
#1.2  #21 #2.2  #2.3  #3.2  User’s Accuracy

#1.2 26 7 0 0 1 0.76

#2.1 4 11 0 0 1 0.69

#2.2 0 0 3 0 3 0.50

#2.3 4 0 0 19 0 0.83

#3.2 0 4 8 0 25 0.68

Producer’s Accuracy  0.76 0.50 0.27 1.00 0.83

#1.2: mature sparse reversed J/peaked reversed J; #2.1: young dense single
storey; #2.2: mature single storey; #2.3: very mature single storey; #3.2: ma-
ture sparse multi-layered.

Table 6

Nearest Neighbour imputation contingency table (deciduous forest: Atlantic
biogeographic region/Wytham woods, UK). User’s and producer’s accuracies
are calculated over row and column totals, respectively.

Predicted Observed
#1.1 #1.2  #2.1 #3.1 #3.2  User’s Accuracy

#1.1 40 0 2 1 0 0.93

#1.2 0 41 0 2 2 0.91

#2.1 0 0 5 1 0 0.83

#3.1 1 1 0 10 2 0.71

#3.2 0 1 0 2 5 0.62

Producer’s Accuracy  0.98 0.95 0.71 0.62 0.56

#1.1: young dense reversed J; #1.2: mature sparse reversed J (peaked reversed
J); #2.1: young dense single storey; #3.1: young dense multi-layered; #3.2:
mature sparse multi-layered.

designed to allow its general application for FSTs other than those
present in the case studies shown hereby. The higher tier was proposed
by Valbuena (2015) as a comprehensive bivariate description of forest
structure, more meaningful than recovering parameters of diameter
distributions (Gove, 2004; Lexergd and Eid, 2006). The addition pro-
posed in this article is to include a lower tier of classification, using
QMD and N to attain a greater span of possibilities with FST subtypes
according to the stage of development and density of forests. The Val-
sain site was designed to cover a wide range of plausible FSTs
(Valbuena et al., 2012), some occurring by natural dynamics and others
driven by management (Valbuena et al., 2013), while those in Finland
are highly managed forests (Valbuena et al., 2014, 2016a). With the
inclusion of results from Whytham Woods, we have also extended the
empirical evidence previously shown for conifers. The two-tier method
should also be largely independent of the sampling design employed.
Any effects due to changes in plot size, sampling design, minimum dbh,
etc., would be unimportant whenever the field data can be employed as
good estimators of the variables in hand: QMD, GC, BALM and N. The
estimation of variables like QMD and N is well studied, and known
unbiased when plots are allocated by simple random sampling. Adnan
et al. (2017) showed that the effects of plot size on GC estimation are
negligible for the plot sizes involved in this study. To the best of our
knowledge no studies have tackled with BALM estimators, but similar
assumptions may be presumed as per its relationship to the basal area
and QMD (Gove, 2004). Moreover, these effects on variable estimators
lessen when propagated toward FST classification, because only values
trespassing thresholds have a practical effect. For the purpose of our
study we shall assume that the plots are good estimators of the popu-
lation values for these variables, and thus changes in the CART
thresholds among classes due to these effects are only marginal.
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We used HCA and CART to identify different FSTs using the four
forest variables (QMD, GC, BALM and N). HCA is a widely used un-
supervised statistical method to classify a large group of observations
into several clusters according to similarity, dissimilarity or distance
among individual observations (Bien and Tibshirani, 2011). On the
other hand, CART is a statistical technique for selecting those variables
and their interactions that are most important in determining an out-
come or dependent variable (Breiman et al., 1984). We also used the
kNN method (Venables and Ripley, 2002) to predict those FSTs ob-
tained from ALS datasets (Kim et al., 2009). All these were applied to
data from three biogeographical regions: Boreal, Mediterranean and
Atlantic.

There was an interest in exploring empirical threshold values of the
four forest variables (QMD, GC, BALM and N), and we used the CART
analysis for this purpose (Breiman et al., 1984). Fig. 2a and b show
these threshold values at each node for classifying into FSTs. The first
nodes were based on GC and BALM (Gove, 2004; Lexergd and Eid,
2006; Valbuena, 2015), which indicates the importance of these two
parameters in the disaggregation of the higher tier in FSTs classification
(Fig. 3; BALM — GC feature space). The empirical results yielded values
of GC = 0.51 and GC = 0.55 (Fig. 2a and b), which were both very close
to the theoretical value at GC = 0.5 envisaged by Valbuena et al. (2012)
as a beacon for maximum entropy. Multi-layered FSTs are thus sig-
nalled around this value, while values below/above must necessarily
denote diameter distributions close to Gaussian/negative exponential,
respectively. These values were roughly consistent with previous results
obtained by Duduman (2011) and Valbuena et al. (2013). Our results
from deciduous forest are also similar to those obtained by Simpson
et al. (2017) from the same area, however, they used vertical gap
probability (proportion ALS returns at specific heights) for structural
classification. On the other hand, there was a lack of previous studies
analysing empirical values for BALM at different FSTs (Valbuena,
2015). One very relevant result was the peaked reversed J diameter
distributions (#1.2) which can be identified by large values of
BALM > 0.87 (Fig. 2b). This FST was characterized by two distinctive
storeys — one mature and spare trees accompanied by dense young in-
growth in the understorey —. Conversely, low values of BALM < 0.67
(Fig. 2a) may indicate the presence of forest ecosystems with very
closed canopies and competitive conditions dominated by mature
thinning, hence denoting single storey FSTs. Thus, BALM was chosen
by the CART algorithm to separate single storey (with lower BALM)
and multi-layered (with medium/higher BALM) (Gove, 2004).

The more traditionally used forest variables, QUMD and N, were
useful to identify lower-tier sub-types: young/mature and dense/sparse
FSTs, respectively (Dodson et al., 2012). CART analysis effectively se-
parated the very mature single storey FST (#2.3) in coniferous forest
(Fig. 2a) which contained very mature trees (above 100 years old) from
Valsain forest (Spain) as a result of group shelterwood forest manage-
ment based on long rotation periods (Valbuena et al., 2013). The sta-
tistical properties of these FSTs are given in Tables 4a and 4b, wherein,
young dense reversed J FST (#1.1) and mature sparse reversed J/
peaked reversed J (#1.2) had the largest number of individual ob-
servations in deciduous and coniferous forests, respectively. The per-
formance of the clustering analysis can also be appreciated in the
scatterplot distribution in the feature space of QMD, GC, BALM and N
(Fig. 3). The widest separation among FSTs was found in the
GC — BALM feature space (Gove, 2004) which showed that the GC and
BALM are the best indicators in FSTs classifications, as postulated by
Valbuena (2015).

ALS is a useful tool for the structural heterogeneity assessment
(Zimble et al., 2003; Lefsky et al., 2005; Marvin et al., 2014) and
mapping of broad forest areas (Asner and Mascaro, 2014). Our results
for predicting FSTs from ALS dataset are shown in Tables 5 and 6.
Generally, unbiased estimations were found in both groups and the
observed errors were mostly between FSTs that were, structurally
speaking, close to one-another. The highest confusion was found in
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misclassifying mature single storey (#2.2) as mature sparse multi-
layered (#3.2). These two classes were the most loosely discriminated
ones from the forest variables themselves (Fig. 2a), and thus it was not
surprising that they showed worse results in their ALS prediction. Such
narrow differences and misclassifications are less important because
classifying a mature single storey (#2.2) as mature sparse multi-layered
(#3.2) would have a lesser impact in terms of forest management and
practical decision-making than a misclassification as a young dense
reversed J (#1.1). We obtained a greater overall accuracy and kappa
coefficient in the deciduous forest (0.87 and 0.81) as compared to the
coniferous forest (0.73 and 0.64), which can be simply due to the dif-
ferences in the ALS datasets employed in the coniferous group. These
accuracies obtained, however, show that the methodology may reliably
be applied to disparate ALS datasets surveyed at diverse ecoregions and
forest types.

The analysis and classification of forest structural types proposed
here is of interest for the conservation and promotion of biodiversity,
prevention of natural disasters and other ecosystem services. Therefore,
forest and natural area managers, nature conservation bodies, land-
scape planning and ecotourism stakeholders are among the activities
and professionals potentially interested in the application of our
methodology. Furthermore, this methodology is well adapted to
monitor changes over space and time, as it is based on remote sensors
such as LiDAR, which is nowadays used for great extensions and even
for nation-wide area coverage. The approach presented in this article
could, thanks to its simplicity, be adopted at many different forest types
across all geographical zones. It could thus be beneficial for interna-
tional efforts for harmonizing national forest inventories, initialized by
the COST Action E43 (COST, 2006; McRoberts et al., 2008, 2012). At
pan-European level it could, for instance, contribute to further devel-
opments in the ICP Forests, which is International Co-operative Pro-
gramme on Assessment and Monitoring of Air Pollution Effects on
Forests (JRC, 2011; Giannetti et al., 2018). More globally, it could assist
the development of essential biodiversity variables from ALS (Pereira
et al., 2013; Proenca et al., 2017), and contribute to the use of remote
sensing to inform policy-makers on progress towards sustainable de-
velopment goals and biodiversity targets (O'Connor et al., 2015;
Vihervaara et al., 2017).

5. Conclusions

In this research, we developed a region-independent methodology
for forest structural types assessment, and demonstrated its utility by
using disparate datasets from three biogeographical regions — Boreal,
Mediterranean and Atlantic —. The methodology is a simple two-tier
approach, feasible for its adoption across ecoregions. We separated
FSTs at coniferous (Boreal plus Mediterranean combined) and decid-
uous (Atlantic) forests, using four forest variables — QMD, GC, BALM
and N - and found empirical threshold values for using them in the
identification of different FSTs. We found that the GC and BALM are
the most important variables in the identification of a higher tier of
FSTs: reversed J, single storey and multi-layered. Furthermore, a lower
tier young/mature and sparse/dense sub-types can be further identified
using QMD and N. We also used nearest neighbour imputation method
and the FSTs identified from field data were predicted from ALS data. In
spite of using very disparate ALS surveys, the results yielded reliable
FST classification. The simplicity of this approach paves the way toward
transnational assessments of FSTs across bioregions.
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